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The Schr6dinger difference operator considered here has the form 

(g~,(~) O )(n) = -g(O(n + 1) + 0(n -- 1)) + V(no3 + ~) tp(n) 

where V is a C-per iodic  Morse function taking each value at not more than 
two points. It is shown that for sufficiently small e the operator H~(~) has for 
a.e. c~ a pure point spectrum. The corresponding eigenfunctions decay exponen- 
tially outside a finite set. The integrated density of states is an incomplete devil's 
staircase with infinitely many flat pieces. 

KEY WORDS:  Schr6dinger operator; eigenfunction; eigenvalue; Green's 
function; continued fraction. 

1. I N T R O D U C T I O N  

The main subject of this paper concerns the properties of localization of 
eigenfunctions (e.f.) of the self-adjoint operator H~(c~) acting in 12(- 0% oe) 
by the formula 

(H~(c~) ~)(n) = -e(ff(n + 1) + ~ ( n -  1))+ V(nco+c~)t)(n) (1.1) 

where V is a C2-smooth periodic function of period 1, having one non- 
degenerate maximum and minimum and strictly monotone with nonzero 
derivatives between them. A typical example is V(cQ=cos2ncc The 
rotation number co is a typical irrational number. More precise 
assumptions concerning co will be formulated below. 
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Equation (1.1) is a particular example of the one-dimensional dif- 
ference Schr6dinger operator with a random potential. In a more general 
setting one considers a measure space (M, Jr #) with a probability 
measure /t, its measure-preserving ergodic automorphism T, and a 
measurable function V(x). Each random realization of the potential is a 
sample of values of V along a random trajectory, i.e., Vn = V(Tnx). Thus, 
the whole randomness stems from the randomness of an initial point x dis- 
tributed according to the measure ~. Thus, the general form of (L1) is 

(H~(x)~p)(n)= -e(t~(n+ l)+~p(n-1))+ V(T"x)O(n) (1.2) 

Equation (1.1) corresponds to the case of M = S  l, with # the Lebesgue 
measure and T the rotation of M to the angle ~o. 

We shall say that for (1.2) the complete Anderson localization holds if, 
with #-probability 1, the operator He(x ) has a complete system of eigen- 
functions (e.f.) belonging to 12(-oe, oo). Naturally, the sets of e.f. and 
corresponding eigenvalues (e.v.) are functions of x, i.e., are random 
variables in an appropriate sense. 

The property of localization has been investigated mostly in cases 
where { V(Tnx)} was a sequence of identically distributed independent ran- 
dom variables (iirv). The first explanations of localization were given by 
Mott and Twose (1) and Borland. (2) Namely, consider the equation 

(H,~)(n) = -~(ff(n + 1) + ~9(n- 1))+ ( V , - E ) i f ( n )  (1.3) 

where V n is a sequence of iirv. Then it follows from Furstenberg's theorem 
+ + that for each E with ~t-probability 1 there exist Oe (0), 0E (1) such that the 

corresponding solutions of (1.3) for n > 0  with these initial data decay 
exponentially as n ~ ~ .  In the same manner there exist OE(0), q)E(1) that 
have this property as n ~ - ~ .  According to Refs. 1 and 2, the e.v. corre- 
spond to those E for which ~p+(0)=~b~(0), q J ~ ( 1 ) = ~ ( 1 ) .  The main 
mathematical difficulty in this approach is due to the fact that the appear- 
ing sets of measure zero depend on E and for a typical sequence Vn the 
function ~+ (1)/~p~ (0), which is defined only almost everywhere in x, is not 
continuous in E. Nevertheless, the final conclusion concerning the 
localization is true. The first mathematical proofs for a slightly different 
situation were given by Goldsheid eta/. (4'5) Kunz and Souillard (5) con- 
sidered the case (1.2) where the iirv have a probability distribution with a 
bounded density. The idea of Ref. 5 is slightly different from that of Refs. 3 
and 4. One of the main ingredients of all these and subsequent proofs is the 
statement that all Liapunov exponents of the corresponding monodromy 
matrices are different from zero, which in fact implies the exponential decay 
of solutions ~9-+. The exact results about the exponents defining the decay 
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of e.f. were obtained by Molchanov (6) and Carmona. (7) The recent survey 
article by Souillard (8~ contains a rich mine of information about proofs and 
results on localization, based upon the technique of Liapunov exponents. 

The next landmark in developing the mathematical theory of 
localization was the paper by Fr6hlich and Spencer. (9) They considered the 
multidimensional version of (1.2) where again the random potential con- 
sisted of a sequence of iirv whose distribution has a bounded density. The 
main results of Ref. 9 gave, under appropriate assumptions, some 
estimations of Green's functions and in fact a construction of infinitely 
many localized e.f. provided that e is sufficiently small. Later Fr6hlich 
et al. (1~ showed that for small enough e the complete Anderson localization 
takes place. In this connection an earlier paper by Jona-Lasinio et al. (H) 

should also be mentioned. The localization in this situation was proven by 
Delyon et al. ~12) and Simon e ta / .  O3) 

The main idea of Ref. 9 was based upon the notion of quantum tunnel- 
ing and resonant e.f. The authors invented a very interesting approach to 
the construction of exact e.f., which resembles in a sense the methods of 
KAM theory. Namely, assuming that e.f. of the operator in a bounded 
domain with the Dirichlet boundary conditions are constructed, the 
authors write down the series containing Green's functions for extended e.f. 
in larger domains. The series is rapidly converging if a nonresonant con- 
dition holds. This condition is formulated in terms of differences of e.v. in 
different domains. Using Wegner's lemma, ~4) the authors estimate the 
probability distribution for these differences. From the estimation the 
statement of localization follows with the help of the Borel-Cantelli lemma. 
In the one-dimensional situation Fr6hlich et al., ~1~ using their methods~ 
reproduced the results of Kunz and Souillard. ~5t Recently Carmona et aL ~5~ 

extended the technique and proved the localization for cases where the ran- 
dom variables V n take a finite number of values. Let us emphasize that for 
iirv Anderson localization takes place for all values of e. 

Now return to the operator (1.1). The class of quasiperiodic potentials 
is the simplest one after the class of periodic potentials. In the latter case 
the spectrum has a zone structure and e.f. have the form of Bloch functions 
~ ( n )  = elPn~o(n), where q~(n) is a periodic function whose period is equal to 
the period of the potential, and p is a quasimomentum. The general interest 
in problems concerning spectral properties of (1.1) has increased recently in 
connection with the discovery of quasicrystals. One-dimensional problems 
are also of more than mathematical interest. For example, an optimistic 
interpretation of the results of experimental work ~6~ sees them as evidence 
of the existence of compounds that are periodic along two directions and 
quasiperiodic in the third direction. In Ref. 17, concerning the motion of 
forced, damped pendulums, the problems of its dynamics are directly 
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connected with the spectral properties of (1.1). One should also mention 
the interesting papers by Kohmoto  et al. (18) and Kalugin et a/. (19) where 
some results for spectra of (1.1) were obtained for quasiperiodic potentials 
taking a finite number of values. The results by Delyon and Petritis (2~ 
show that in this case the spectrum might be only singular. 

The first rigorous results for one-dimensional continuous Schr6dinger 
operators with quasiperiodic potentials were obtained in Refs. 21-23. Later 
more exact estimations were given by Riissmann, (24) and Bellissard et al. (25) 
extended the technique of Refs. 21, 22, and 24 to (1.1). The main result of 
these studies shows that for sufficiently large E or for sufficiently small 
potentials one can construct a set S~ c [ - 2 ~  + rain V, 2e + max V] not 
depending on c~ such that for each 2 e S~ there exist two Bloch e.f. of the 
form eiP"q~(nco+c~) and e iP"q~(nco+7) having the same e.v. Moreover, 
l (S , ) /max V - m i n  V ~  1 as e--, 0% where l in this section means the 
Lebesgue measure. The set S, constructed in Refs. 21-25 is a Cantor-type 
set of positive measure. It gives a contribution to the limit density of states 
which turns out to have a devil's staircase component. The components of 
the complement or gaps are analogs of forbidden zones, the union of which 
is, as expected, an everywhere dense set. Strictly speaking, the method, 
which is based on KAM estimation, does not give any information about 
proper ties of the spectrum for points of this set. However, some results by 
Avron and Simon (26) show that generically the limit density of states of 
(1.1) is a Cantor devil's staircase, while Johnson and Moser/27/ give a 
beautiful description of the forbidden zones (f.z.). Moser and P6schel (28) 
show that in typical situations the f.z. have positive length. 

The main result of this paper is a theorem that states that for suf- 
ficiently small e the spectrum of H~(ct) is pure point and each e.f. decays 
exponentially outside a finite set. The set of e.v. {2z(e)} really depends on 
e, or, using the terminology of the theory of dynamical systems, the spec- 
trum of H,(~) depends sensitively on e. Thus, we encounter in (t.1) two 
different types of spectra: a Bloch spectrum not depending on c~ and a pure 
point spectrum sensitively depending on e. The transition from one type to 
another under the change of e is apparently complicated and the notion of 
mobility edge as a strict boundary between two types of spectra needs some 
clarification here. Probably this transition has something in common with 
the transition occurring in the bifurcation of invariant KAM circles into 
cantori (see, e.g., Ref. 30). 

The method of this paper was inspired by the paper of Fr6hlich and 
Spencer. ~9~ Our main idea consists in a detailed analysis of the process of 
tunneling. Namely, suppose that we have a method that gives a possibility 
for any e.f. ~ =  {O(n)} of H~(c~) [see (1.l)]  to construct an essential 
support (e.s.) Z(O), which is a finite subset of the lattice Z a having the 
following two natural properties: 
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following 
~(~) 

[0, oo). 

(a) Outside of Z(~)  the values of ~(n) decay exponentially with the 
distance of n to Z(~). 

(b) If ~p is an e.f. of H~(~), then T~ is an e.f. of H~(~+~o) and 
Z(Tr = TZ(O); here, by the same letter T we denote the translation of the 
lattice Z 1 to the left and the induced transformation of sequences 
(T~)(n) = r + 1). 

The properties (a) and (b) do not determine Z( r  uniquely, but in the 
following sections we shall elaborate a concrete procedure for their con- 
struction. If we have already defined Z(~)  for all ~, we may introduce the 

two new objects: 
is the set of all e.f. ~ of the operator H~(~) for which 0~ Z 0 P ) c  

A(~) is the set of all e.v. 2(~) of e.f. belonging to (b(~). 
In general ~(~) and A(~) are multivalued functions of ~ taking finitely 

many values. In our situation they are "measurable" in ~. In the case of 
complete Anderson localization the set of all e.v. of H~(~) is equal to 
U~=_~ A(~+rnco), i.e., the whole spectrum consists of values of a 
measurable function along a trajectory of rotation. It was always clear that 
in the domain of Anderson localization the whole set of e.v. of H~(x) in 
(1.2) is a nonmeasurable function of x. The last expression shows explicitly 
the nature of this nonmeasurability. The basis of all e.f. can be written as 
Um~=_ ~ T"qs(~ + me)). It is easy to show also that the limit density of 
states is the distribution function of A(cz). Certainly objects like q~(~) and 
A(~) can be defined not only in our situation, but also in the general 
setting of (1.2). The investigation of their properties might be useful for 
many problems, for example, a limiting distribution of spacings between 
the nearest e.v. and others. 

The first idea of the possibility of Anderson localization in (1.1) with 
V(~)=cos  2~t~ appeared in Ref. 29, where the Aubry duality was dis- 
covered and it was proven that for small enough e Liapunov exponents for 
all values of the spectral parameter E are positivefl Later Simon (31) and 
Pastur and Figotin (32) gave a more rigorous derivation of these results. It 
follows from the proof of our theorem that the integrated density of states 
of H~(~) is, for small enough e, a Cantor devil's staircase concentrated on a 
Cantor set of positive measure and for all E the Liapunov exponents are 
positive for general potentials V. Anderson localization for the potential 
V(~) = tg(~t)  was proved by Pastur and Figotin (33) and Simon. (34) Other 
examples of potentials where one can establish Anderson localization for 
small e appeared in a paper by P6schel. (35) The fact that the integrated den- 
sity of states is a Cantor staircase is connected with the fact that we are 
dealing with quasiperiodic potentials with one incommensurate density. 

2 In fact, the results are sharper. 
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As is clear from what was said above, our method consists in con- 
structing functions q~(c~) and A(e) for the operators H~(~). It is based upon 
a renormalization group analysis currently popular in the theory of 
dynamical systems. Namely, let us consider the continued fraction expan- 
sion of co, i.e., co = [k~, k2 ..... k~,...]. We assume that (1) k, ~< const, s2; (2) 
if co,=pjq~ is the sth approximant of co, i.e., co,= [k~, k2 ..... k~], then 
lim,__,,o(1/s)lnq, exists. It is well known that almost all co have both 
properties. Our analysis goes by induction in s. On the sth step we consider 
the operator 

(H~)(c0 O)(n) = -e(O(n+l)+O(n-1))+V(ncos+oOO(n) (1.4) 

in the finite-dimensional space of periodic sequences {~,(n)} with the 
period q,, for which we define the corresponding objects g)(s)(c 0 and 
A(')(c0. Then we develop a perturbation theory that makes it possible to 
pass from s-+ s + 1. In the next section we discuss in detail the initial step 
of the construction. 

In our proof several orders of smallness appear. The smallness qs 1 is a 
smallness of distances between the e.v. of H~S)(~). Next is the smallness qs 2, 
which is a smallness of perturbation of the potential under the transition 
s --+ s + 1. Then we introduce a smallness that is intermediate between these 
and is connected with the cutoff of e.f. (see later). We choose this to be 
equal to a.ls 3/2., however, it is possible to have qs  ~ for arbitrary 7, 1 < 7 < 2. 
We also consider slightly perturbed smallness, such as q7 ~+-~(~n~/~) ~, 
q-2_+_,.(tn l/~)-~ or q-3/2• The constants c and C are absolute con- 
stants not depending on e and s. In one part of the construction we also 
need qs2+~L where c(ln l/e) -~ ~ ~ 1/2. The rotation of the circle to the 
angle co is denoted by R<o. 

Remark. J. Fr6htich has informed me that he and T. Spencer, using 
their methods, (9'1~ have also proved the complete Anderson localization 
for (1.1). 

2. B E G I N N I N G  OF T H E  I N D U C T I V E  P R O C E D U R E  

We consider the operator H~S)(c~) acting in the space of periodic 
sequences ~b = {O(n)}, 0(n + q,) = ~b(n) by the formula 

(H~S)(c~) O)(n) --= -e(O(n+l)+O(n--1))+V(ncos+o:)O(n) (2.1) 

The spectrum of H~S)(ct) consists of qs numbers ,U~;~)(c 0 ~< ~,~;2)(~)~<.--~< 
2(')too where each ~ ( ' ) ~  is a periodic function of ~ with period q71. A ~ , q s  ~, 1 ,  v8,1 ,, # 

typical form of these functions is presented in Fig. 1. The fact that they 
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Figure 1 

really look like this will be clear from the later analysis. The intervals 
(max~ 2~i)(~), min~ 2~;]+ l(C~)) are forbidden zones (f.z.) because there are no 
c~ for which )v~)(c~) fit in these intervals. Generically the number of all f.z. is 
equal to q s -  1. 

This representation for the spectrum is not very convenient for our 
goals and we shall elaborate another one. For e = 0 the spectrum of H~)(e) 
consists of the numbers V(m~,  + o~), 0 <~ m < q,. Each e.f. ~ (~  is concen- 
trated at a single point, i.e., ,//(s) = 3m" If we put A(oS)(c~) = V(c~), then we see T ~ , m  

that the whole spectrum is given by the formula '.-'m=O41q~-~ A(o~)(O~ + mq~ ~). 
It is natural to define the essential support (e.s.) of the e.f. gm as con- 

sisting of the point m. Thus, qs~)(c~) is the 6-function with the eigenvalue 
(e.v.) A~oS)(o~)= V(~). 

Denote H<l={o:lV(ko)~+o:)=V(lo)~+o:)} .  It follows from our 
assumptions concerning V that Hk,t consists precisely of two points (see 
Fig. 2). Also, Hk,~ = R~Ho.~ k" The structure of e.f. of H~s)(~) might change 
from that of H(o~)(c~) in neighborhoods of Hkj. Introduce neighborhoods 
Ok, t, ~ of points cq~Hk,~, i =  1, 2, of radii Pit kl in such a way that Oka, i---- 

k R~,Oo,l k,r and different neighborhoods are disjoint. 
Assume that O~q~l, Jk, z, i Ok,z. ~. Then e.v. 2(sZ 1 <~j<~q,, of the unpertur- 

~,J  

bed operator H~o')(e) are sufficiently far from each other, i.e., 2(S] - -(') 2=,/I/> )~, 
where Z > 0  depends only on the choice of the numbers Plt-kl. The stan- 
dard perturbation theory is applied provided that e is sufficiently small. It 
gives for small enough e the existence of q~ normed e.f. J/~ <s) 1 ~< m ~< q~, "F ~ , m ,  

such that ]O~,(n)] ~< (const-e) ai~(~'m), where dist is ~he usual distance on 
the set 0 ~< n < qs with periodic boundary conditions. The corresponding 

~('~ V(mc%+cQI ~cons t . s .  The reader e.v. ).~,,~(s) satisfy the inequalities "~,,m- 
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V 

1 

Figure 2 

can also derive all these facts concerning ~/J(') from the results of Section 4. T ~ , m  

Some nontriviality is contained in the fact that the constant does not 
depend on e. In deriving the inequality for )(s) one has to use the fact that 
~3 s) -~3  sl. ~>const- [ j l -J21 - b  for some b > 0 ,  which follows easily from 

J l  ~ J2 

the assumptions about ~. As before, we define the e.s. of ff(~)m as consisting 
of the point m, i.e., ~) Z (  ~J ~:,m ) = m .  

Let us take ~ e Ok,z,~. Now the difference between one pair of unpertur- 
bed e.v. ~(s) ~(~) can be arbitrarily small while all other e.v. j(s! are far from 
each other and from this pair. This pair generates the simplest resonant e.f. 
whose form might be more complicated. Other e.f. are constructed with the 
help of the usual perturbation theory and their values decay exponentially 
outside some point m. For  such e.f. ~/~ ~) we put as before ~s) Z ( l ~ t o ; , m  ) = m. .r- ~:,m 

The analysis of the resonant e.f. is a bit more complicated. We look for 
two e.f. having the form 

t p ( s )  = A  b k q - A 2 b ~ +  "'" cqk,1, -+ 1 

where dots denote the projections to the space orthogonal to 6k, 6t, which 
are small enough compared with A~ + A 2. The graphs of the corresponding 
e.v. 2+ = ~(') are given in Fig. 3. One sees explicitly the appearence of "~ ~,k,l ,  -+ 

the forbidden zones (f.z.) due to the resonanees. The formulas of pertur- 
bation theory show that the widths of f.z. decay exponentially with the 
dist(k, l). 
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~ -  _.d'.-" v(e%. ~) 

11 \ 

Figure 3 

The main technique of this paper is the perturbation theory. It will be 
applied to functions that are not exact e.f. but are e.f. with some precision 
or almost e.f. (see later). In other words, sometimes it is more convenient 
for us to replace the exact e.f. by approximate e.f. if the corresponding error 
is small enough. According to this approach, at the initial step of the con- 
struction we shall consider the exact e.f. if the widths of the f.z. are not too 
small, or, more precisely, if 

fk- /F  < ( 2 - ~ 1 ) I n  g~o" In 

where ~ will be specified later. In this case we put 

If 

, , ,  Z ( r  = 

Ik-ll >~(2-cS)lnqso" In 

then the width of the f.z. is equal to min ]2+(c~)-2_(e) l  ~<q~7 2+2<. Here 
we make the operation that we call the cut of the resonant e.f. Namely, we 
find the numbers Bi, 1 ~< i ~< 4, such that 

t~(s)=Bz,l,(s) + B  j,(s) = 6 k +  ""  
et,k ~F ~ ,k , l ,  + 2 tF o~,k,1, - -  

tp(s)= B3d,(s) + B4.h(s) =(~l~- . . .  
c~,l W c t , k , l ,  + ~Fo:,k,l ,  
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where dots have the same meaning as above. The functions ~,~,k'/'('~ and r  are 
almost e.f. and the error is of the order 2+ - 2 .  

For approximate e.f. ,/,(,) and ,/,(,) we put Z(0(~:~)= k and ~s) z ( r  = t. "F ~ , k  "F ~ , /  

Now we can define the functions Os(s)(e) and AU)(c0. If e ~ Uu Oo.u, we put 
q~(s)(e) to be equal to the exact e.f. ,/,(') for which (') Z(r = 0 and A(')(~) is ' r  c~,0,  

equal to the corresponding e.v. If ~eOo.k,i and O<k<(2-al)lnqs. 
(ln l/s) 1, then q~(s)(e) consists of two exact e.f. having the e.s. {0, k}, and 
A(')(c~) consists of two corresponding e.v. Remark that for ~e O k.o.i the 
values of q~(')(~) and A(')(e) are empty sets. Indeed, for such c~ the e.f. 
whose e.s. contains 0 has the e.s. { - k ,  0}. Thus, there are no e.f. for which 
the e.s. contains O and lies to the right of 0. 

If ~ e O0,ka and k ,>. (2 - 61 ) in q, '  (In l/e) - 1, then we take q~(s)(~) to be 
equal to the approximate e.f. ~,~,o,'/'(~) for which Z(r =0.  If ~-~,o'/'(')-- 
B ,/,(,) + R  , / , ( , )  B~+B22= 1, we put A(')(~)= B~2+ +B~2 Thus, 1 tF c~,0,k, + ~ ' 2 " f f  ~ , 0 , k ,  - -  , 

~bu)(~) and A(~)(c~) are completely defined. The graph of A(')(e) is given in 
Fig. 4. 

The function Au~ has the following property. 
For each 2 from the range of AI~~ except the extremal one there are 

two values ~1, ~2 for which 2 = A(S)(~l)= 1(')(~2)- The e.s. of corresponding 
elements of qs(')(cq) and ~b~ are the same. 

cs~ 

Figure 4 
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In our construction we consider the transitions s ~ s +  1 and the 
graphs A~)(a+kq~+l), 0~<k<q~+~. In small neighborhoods of their 
points of intersection there appear new resonances where the form of the 
e.f. changes. The main idea of our approach is to follow for these changes. 

3. I N D U C T I V E  A S S U M P T I O N S  A B O U T  
THE S P E C T R U M  OF H~'>(a) 

The main content of this paper is an inductive process that makes it 
possible to construct e.f. of H~ ~+ ~)(a) based on detailed information concer- 
ning e.f. and e.v. of H~)(~). This information is described in this section. 

Denote the e.v. of the operator H~)(~) by /~Is)(a), l <~i<<,qs. 
Generically, 

< < . . .  < 

and each/z~)(~) is a periodic function of a with the period q 1. Intervals 
H~= (max~#~_l(~), min~ kt~(a)) are forbidden zones (f.z.). A f.z. is called 
wide if the length IH~] > qj2+6~. Other f.z. are called narrow. They appear 
as a result of wide resonances. 

As in Section 2, we shall deal with another description of the spectrum. 
Assume that on the axis of the spectrum r ~< q~ nonoverlapping segments 
[al, bl], a t + l - b z > q s  2+61, and subsegments [al, cl], [dt, bt], a l<c l< 
d~<bz, are given, and thus the gap (b~, a~+l) is always wide. 

I. For  each l, l<~l<~r, four nonoverlapping intervals d~,~.)= 
[a~,~), fi<~)],~,~ 1 ~< i~< 4, on the axis of ~ are given and on each of them a 
C2-function A~.~ ) is defined in such a way that: 

1. The following hold: 

A~s)t3 ~)~ AI~')(3 ~s~)= [c~, dr] /,2~ 1,2 l ~ 1,3 /,3 

h!, 1)s 2 <~ ~ , ch 2 ~ h~2)q~/2 

_h~)<dA~9(~)<~ 1 [ d2A}S3'(a ) 
d~ (1) 2 ,  ~ ~ h ( 2 ) a l / 2  

h~, s ~ -~ 

Here h~ 1), h~ 2) are constants and we will see from our construction that they 
converge to a limit as s ~ ~ .  

2. The segments A~sl ~, d~ 2 are called resonant zones (r.z.). For  each 
r.z. the moment s(l, i), i =  1, 4, of its appearance is defined. Also, 

A~S)~A~s~ [at, cl], A~s)~A ~s)~- [dl, bt] 1,11,~ l, l l ~ 1,4 k 1,4 Y - -  
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. The following hold: 

dZA~,l)>~(h~l)) 1 ,,1/4 
"/s( l ,1)  ~ d~ 2 

dZA /,4 
d~ 2 ~< _(h~l)) 1,1/4 "/s( / ,1)  

and each value except at, bl is taken precisely at two points. 
It is convenient  to assume that  each function AI,9 ) is defined everywhere 

but its value outside A l~.) is an empty set. 
A typical form of A~,~) is presented at in Fig. 5. 

II. Fo r  each A~s) nonover lapping subintervals A~s) c A ~s) are defined, l,i ~ I,i ,k l,i 

which are called small resonance zones. We shall see that  if ~ + % t  q~ 
A(s) for all t, 0 ~< t < q,, then the spectrum of H~)(~) is the set l , i ,k I,i,k 

qs 1 

~) U a~9(ct + t%) 
t - - O  l,i 

which therefore has q points. If ~ s A l~)!k for some l, i, k, then the set 

q s - -  1 

U U AI,I'(~ + t~.) 
t = 0  I,i 

contains as before q~ points, but  some of them are only approximate  e.v. 
The function A(S)(~) is defined by the expression 

A(~)(~) = ~) AI~I)(~) 
/ ,i:~ ~ 4 , 1  ~ 

% 

. . . . . . . . . . . . . . . . . .   -A'L 

/ 
Ae,~ 

Figure 5 
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III. Small r.z. d},s!k arc united in pairs "~t,~,k,A(') ~,r,k'A(') _--A(')~t,~,k +COst for 
some t, where 

( 2 - 6 ~ )  In qs" In <~t<q,  

Moreover ,  i = i '  for i =  1, 4 and i '= i_+  1 for i = 2  or 3. The value of t is 
called the width of the resonance corresponding to the pair A(s) a(,)  ~ l , i , k ~  ~ l , i ' , k "  

Funct ions AI3) are mono tone  on each of these intervals; on one of them it is 
increasing, while it is decreasing on the other, but  a(,)tA(s) ~_ a(*)tA(,) ~ ' l , i  ~ l , i , k !  - -  ~ * l , i ' t ~ l , i ' , k ' ) "  

The lengths of the intervals a(*) A(s) satisfy the inequalities ~ l , i , k  ~ l , i ' , k  ' 

where 

zJ~si!k, A (s) ~qs3m/2-1/4 
, J l ,  i , k  

[ tln(1/e) ~_ 1 
m = k(2--~)--~n q, J 

Now we shall formulate inductive assumptions concerning e.f. 

IV. Assume that ar  a(s) and ~xeA (s) Then an exact normed  J l, i ,k  lo, io" 

e.f. ,/,(,.) of  H~S)(e) is defined whose e.v. is equal to A (s) ~,',~ If a ~ A~,{-)k, then (]] ~, lo, io lo, io t ~ l"  

a normed  almost e.s ,/,(') is defined in a sense to be specified later. Fo r  W o:,l,i ,k 

each e.f. ,1, - ,/,(,) ~q~], ~ - -  ~.10,i0 or almost  e.f. ~ = ~(,').~.~ a finite set Z ( ~ , ) c  [0, 1 
0 e  Z(~) ,  is defined, which is called an essential support  (e.s.) of ~,. Fo r  this 
set: 

(1) [O(n)l ~ ( C e )  d i s t ( n ' Z ( ~ 9 ) )  

for those n for which 

and 

dist(n, Z(~b)) -,~ 2 In 1/e 

(2) diam(Z(g,))  ~< C In s 

The values of the constants  C and c follow easily from the construction.  
Now we can explain the sense in which g,(~].,.e is an almost e.f. Namely,  

O~,,,,,k)(n) _ Ai,~)(~) ~9~?),i,k(n) ~< q~ 2 + al 

for all n for which 

dist(n, (s) (1 c ) Z(~b~a'i'~)) ~< 2 3 lnqs  - 1 - ~  
ln(1/E) 
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V. The  e.s. Z does not  depend on eeAISuA J~3  ) for each l =  1, 2 ..... r. 
For  c~ s AI2 (~ e A~2) the e.s. also does not  depend on e and there exists m 1 
(m4) such that  Z = Z '  ~ Tm'z  ', i = 1, 4, where Z '  is an e.s. cor responding to 
At,2. It  is assumed also that  Z and Tm'Z ' do not  intersect each other. 

If 0 is an e.f. or a lmost  e.f. of H~')(~), then T ' 0  is an e.f. or  a lmost  e.f. 
of H~')(e + to),). By definition, the e.s. of T '  o is Z(O ) + t. 

VI. Fo r  each phase c~ put  

~("~(~)= U if, u)~4~.,) ~ "g o~,l,i ot , l , i ,k ! 

The set of all e.f. or a lmost  e.f. 

U U Tq,,,(,) , ,O(, t  )--  U T'q~(')( ~ +to~ J \ W c~,l,i ~ ot , l , i ,k  - -  

O ~ t < q s  l,i  O ~ t < q s  

is a basis in the space of periodic sequences ~b = {O(n)}, O(n + q,) = ~,(n). 

VII .  It  follows f rom V that  # ( Z ( O ) ) =  T.  The number  r is called the 
range of an e.f. or of the interval A~,~I. It  means  that  the corresponding e.f. 
appeared  as a result of r resonances.  If r>~ 1, then Z(O) = Z'  u T ~ Z  ', where 
m is the width of the resonance. In fact for the resonances of the rth range 
we have r numbers  m~ < m 2 <  " ' "  < m r ,  where r e=mr ,  m~ t is defined in a 
similar way for Z '  and so on. Also, d ('~ c A (s') and , - (,'1 (,') t,i r,i' Z -Z(O~,r,i ,)  for :zeAr, i, 
and so on. 

In passing f rom s ---, s + 1 we first construct  the functions A u§ ~)(~) and 
r then decompose  the 2 axis onto  corresponding segments  and 
define corresponding A('  + 1) The construct ion gives all needed propert ies  of l , i  

these functions. An approx imate  form of AUg(c0 is presented in Fig. 6. I t  
differs f rom Fig. 4 by a slightly more  compl ica ted form of resonances.  Mul-  
t ivaluedness of A ('~ is connected with the resonant  e.f. Also, there are inter- 
vals where Al,}~(c~ ) is an empty  set for all l, i (see Section 2). We show in 
Fig. 7 two resonant  e.f. whose essential suppor t  consists of two points  Z = 
{0, t}. In this situation/-/~')(c 0 does not  have e.f. or  a lmost  e.f. whose e.s. is 
the point  t, or the opera to r  H~')(o~-O,)s t) does not  have e.f. or a lmost  e.f. 
whose e.s. contains O and lies to the right of 0. This effect was already 
explained in Section 2. 

4. GENERAL T H E O R E M S  OF P E R T U R B A T I O N  T H E O R Y  

We consider the opera to r  H~s)(~) [see (1.1)]. Assume that  there are 
given periodic no rmed  functions ~b ('} 1 ~< i ~  qs, with the per iod q, such 
that:  

(ao) For  each . . . .  fi(s} an e.s. Z(q~,,.)- (~ is defined, 

d iam Z ( ~ ] )  <~ C(ln l / e ) - '  s 
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(a~) The following holds: 

qS(~.](n)l ~< (C~,)dist(n'Z(O~))) 
(a2) -(~) ~oo;,i(n ) = 0 if 

dist(n,Z -(s) ) F 31nq~ 1 
> L2-i -l )J +2  

(a3) We have 

((~(s! ~(s!)__(~iliel ~ q s  3/2-c(1n~) i 
T O ;  I i  ~ T O ; , 1 2 /  

(a4) For each i a number 2(*! is given for which o ; , l  

if 

dist(n, Z(~(~)) ~< ln-(-l~)J + 1 

The properties (ao), (al) show the sense in which the functions (~('! are " r ~ , t  

concentrated near e.s. The property (a3) means that the set of functions 
{q~(~!~ is an almost orthogonal basis. The property (a4) shows that q~(s! is 

o; , t  ) c( , I  

an almost e.f. 
(5('! for those n for We denote by (o(~! the function that coincides with . . . .  

7- ~(,t  

which 

F3  In qs ] 
dist(n, Z((~(~;~)) ~< L2 In ~-~J 

Z (s)) and is equal to zero for other n. Put (~0~, i = Z ( ~ ) .  We have 

H~') (~)  (~(~! = 2(~!(~(*! + F(~! + h (*) r o ; , t  c~,t -r- o ; , t  - -  - ~ , t  - -  ~ , i  (4.1) 

Here h(~](n)= 0 if 

~ 31nq, ] + 1  
dist(n, Z(~o~))) > L2]nU' 

and h(~:](n) ~<const.q2 2+61 for other n. The vector F('! is defined as 
follows: 
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then 

If z is such that  

F ~ l n q ~ ]  
dist(z, Z(qg(~])) = [_2 In 1/el 

d i s t ( z + l , Z  " ' ) = ~ 3 1 n q s ]  
(~%'i) L2 In 1/eJ + 1 

(') , 1) ;  F~(z + 1)  = - - e ~ b ~ ] ( z )  = + 

2. If z is such that 

~ 3 1 n q ~ ]  
dist(z, Z(~o~~))= [2 In l / e ]  

d i s t ( z - 1 ,  Z(~0::])) = [ ~ ]  + 1 

then 

r~iT(z ) = -~O~](z - 1); r(;](z - 1) = -~0~i](z) 

In all other cases F(~](n) = 0. If there are two z for which condition 1 holds, 
then ~s) F~,~(n) is nonzero at four points and so on. 

D e f i n i t i o n  1. An almost e.v. 2~! is nonresonant  if for all j ~  i 

1 
~' -~'J s x~ + [dist(Z(~o~]), Z((0~}))]1~ + q ;~+  ~~'" ~) 

T h e o r e m  1 Assume that  ,~.~! is a nonresonant  e.v. Then the 
operator H~)(~) has an exact e.f. ~/~'! which can be written in the form 7" Ce,l ' 

Ot,l "r ~,t 

where: 

( I  "(s) q- k(s) to(s)] 

j ~ i  --(z, t  --o~,j 

(b2) [36~](n)l<~q72+c~"')-~ foral l  n 

If u(s! is the corresponding e.v., then r -  o~,! 

#(",, - Lr2(s' + C F ( " ~ , ,  - ,  ~.,, ~%.i)(s) * 'h(~'-,  ~,i, q)~:])], <~ qf2+c( ln  ~ ) - 1  
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Proof. Write the e.f. Ik('! in the form r c~,! 

tP('! = (o ~s! + F, ':.~"~s~ c~,l ro~,l ~'] "t'oc,j 
j • i  

Then for the unknown e.v. p and the unknown coefficients x s we have the 
following set of equations: 

= )o~ + gi, + hi, + • xj(gj, + hs, ) (4.2) 
j ~ i  

( # - 2 ; - g s j - h j j )  x j+ ~ xj~(gH+hj~j)=g~j+hgj (4.3) 
Jl 7~J, i 

The coefficients go, h• are found from the expansions 

F(s! = ~ g ..to(s). 
~;,l U Y (x,j 

J 

First we consider (4.3) assuming that # is a free parameter. Rewrite (4.3) in 
the operator form: 

(D - F) x = f (4.4) 

where f i s  the vector with the components g o +  hu, D is the diagonal matrix 
with the matrix elements (# - 2j - gjj - h j j )  ~JJl, and F is the matrix with the 
matrix elements fjj~ = gslJ + hjlJ. If D is invertible, we have from (4.4) 

( I - D - 1 F )  x = D - ~ f  (4.5) 

If the norm lID IFI/< 1, we can write the solution of (4.5) as the 
Neumann series 

x = D - ~ f + D - J F D - ~ f + D  1FD 'FD i f + . . .  (4.6) 

In Appendix A we show that 

[hui ~qs2+al-(m 1)(3/2+c(lne) 1/2) (4.7') 

t gijl ~ q s  m [ 3 / 2  + c(ln a ) - t / 2 ]  (4.7") 

where m is found from the inequalities 

F 3 1 n q s l  
( m _  1) [_~]ne_=_ ~ [  3 In q, ] ~ dist(Z(@S]) " Z(~0(~:})), < m [_2 In l /e]  

822/46/5-6-6 
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This immediate ly  implies that  if 

] if  2 ( s !  .~  1~ l - - c ( l n a )  - I  
- -  ~ z  " ~  ~ q s  

then 

IID-~II ~< const - q~ -- c ( | n  ~ ) - 1  

and 

I[ D 1Ftl<~const'qZ1/2 2 c ( l n  ~:) - 1  

Thus the solution (4.6) really exists. 
The  componen t s  2~j of the vector  D - ' f  have the form 2~j= (gej + hg)/ 

(# ,~s) (F~'!, (') (~) nd = (h(,) (,) h,~ ) andde f ine  - ,t~j). We put  go = ~,, q~,j) + gv a h~j ,..~,~, q~,j) + 
60~] according to (bl) while the rest is equal  to 

(F  (s) 4- k (s) m(s)][H--~(s)] 

cr(1)(o ( s ) h!))qr 

+ ~ U__2(~). + __ (~) j r- ~,j  " # ~:~,j k = l  

(s) ' i}. where ~o means  the vector  {~P~d, J # 
The  es t imat ion of each of these terms is s traightforward.  In the first 

sum y o) we have only terms for which 

dist(Z(9~]),  Z(~o~})) <<,const. In .s  

The nonresonant  condi t ion implies that  the denomina to r  is not  less than 
cons t -s .  The  total  es t imat ion for Y',(') follows f rom the fact that  for every n 
the number  of  a lmost  e.f. T(0(5).~,s for which n ~ Z(~p(~}) and n is the left boun-  
dary of Z(~o~(}) is not  more  than  const  �9 s -  20. This is a direct consequence 
of (a3). The est imations of  the second and third sums ~(z) and Z (3) follow 
from the nonresonant  condi t ion and the es t imat ions (4.7') and (4.7"). The 
est imat ion of the fourth sum Z (4) is based upon  the nonresonant  condit ion 
and the form of the vector  f In order  to get the final est imations,  one has 
to take into account  the direct uniform est imations of terms in the fourth 
sum for k > 1 and more  concrete es t imat ions for k = 1. 

N o w  denote the solut ion of (4.3) as xj(#). Obvious ly  it is a cont inuous  
function of/~. Put t ing it into (4.2), we get the equat ion for # only. Our  
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estimations for xj(/~) and gj~, hs, give easily the existence of at least one 
solution of (4.2) in the considered neighborhood 

Two or more solutions cannot exist, because the appearing e.f. would not 
be orthogonal, being small perturbations of (o(~! | T C q t  " 

In Theorems 2 and 3 we shall consider a resonant case. First we give 
the following: 

D e f i n i t i o n  2. Assume that for two almost e.v. 2(~!~,,, and ,t~,~2"(') the 
following inequalities hold: 

1 (,) _ ) (q 
~,,, ~ s~O + [dist(Z(q~],), Z(~o~]2)) ] ~o 

+ q -  t + c(ln e) -1  (4.8') 

1 2(~)._ ), (s! 
~J "~,k /> S~0 + [dist(Z(~o~}), Z(~o~;]~))] ~o 

+ q Z  l+'(ln~)-~, k = l ,  2, j r  (4.8") 

We shall call (2('! ,!. (~! ~ a simple resonant pair. This means that only 
one difference of e.v. might be arbitrarily small while all others are large. 

T h e o r e m  2. Assume that (2u! 2 (s) ~ is a simple resonant pair. Then 
the operator H~')(e) has two exact e.f., which we denote by r and 
write in the form 

O(O,~'~il,i2),__ = A +  (p('! +B+ ,~  (') m CS'/'U) ~-66,/,(') ~,~1 h~ '~ , i 2  ~ " F a , ( i l , i 2 ) , +  ~ " F ~ x , ( i I , i 2 ) , +  

r = A o(~! + B (o('! 4- 6,/, (') 4- 56,/,(~) 
~ , ( i 1 , i 2 ) ,  - -  r ~ , l  t "r C q l 2 -  "F ~ , ( i 1 , i 2 )  , -  ~ "F ~ , ( i 1 , i 2 )  , - -  

where: 
(c~) ~,/,~st 

h~" ~ , ( i 1 , i 2 ) ,  + 

(FU! + h(s~ (p(~).] 
co(s) 

= A +  }-" 2('! - 2  (s) ~ 'g  
j ~ it,i2 ~,tl ~,J 

2 + 
~oU~ + B +  ~ 2(s! _ ~ ~,g 

j ~ i l , i  2 o:,t2 A ~ , j  

(~d,(s) 
~Fcz,(il,i2) , -- 

( F(S! + h(,~ t~) 
= A _  Y' 

j e i l , i 2  2(S!~,zl - -  2(S)'~,J 

p(s) 

+ B _  
2 ( ~ )  _ r (~). j # i[,i2 Oc,t2 ~O~,J 
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(Ca) The remainder terms &M'(s)~'~,u,,~2),+ and 6 6 ~ ' ~ ,  ,~/,- satisfy the 
same estimations as in Theorem 1, i.e., 

tc]bl~lh,i~),+(r/)l, I b ( ~ i , , i z ) ,  (rt)t ~ qs 2+c0n ~) 

(C3) T h e  e . v .  ,,(') and 12(~) satisfy the inequalities /~'~,(i1,i2), + c~,(il,i2), 

(.~(s) + j~(~'i)2 gilil + hilil "q- gi2i2 q- hi2i2 
,~(s) l c~,i~ 
/~,(i1,i2), ~ 2 + 2 

1 
+ ~ [(fl~], -- flt]] 2 + g,~,, + hg m - g,:,2 - h~292) 2 

+ 4( g~,~2 + h ~1,2)( g~2~ + h i2,~ ) ] ~/2 } ~< q, 2 + ,.(In ~) -1 

(c,) The two-dimensional  matrix 

A+ B+ 

_ B 

is an almost or thogonal  matrix in the following sense: 

[AZ + B 2 + - l I , ] A 2  + B  ~ - I [ , [ A + A  + B + B  t-<..~q.~.-2+~l~)-~ 

ProoL  Look for an e.f. qJ in the following form: 

_ (s) B(ot~.! + ~ x.m(.~) - Aq)~,il + T~,,2 j.r~,j 
j # il,i2 

Then for the unknown xj and the corresponding e.v. # we have the system 
of equations 

A (2~]1 + gi, it + hill, - t2) -t- B(g,2i , + hiah) 

+ ~ xj(gj i  ~ + hji~) = 0 (4.9) 
j ~ ibi2 

A(g i l i2  + hili2) q_ ~(s) B('LT,i2 q- gi2i2 -'}- hi2/2 - 12) 

+ ~ xj(gje2+hj~2)=O (4.10) 
j r il,i2 

~) hjj - 12) x j  + hj~j) (.~,j+gjj+ + ~ xj,(gj~j 
Jl ~ il,i2,j 

+ A(g i ,  j + hi, j)  + B(g~2j + h~2j) = 0 (4.11 ) 
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Again we first consider (4.11), assuming that A, B, and # are parameters. 
Denote by f,., (f,.~) the vector with components g~j+ haj (g~:j+ h~j) and 
rewrite (4.11) in the operator form 

Dx + Fx = Afil + Bfi2 

o r  

( I+ D-~F) x = AD - ~fi~ + BD - ~fi2 

Let y be such that 

I # _  )(s). ~> qTl +c(ln ~)-L 
~ j  

for all j # ii, i 2. Then the same arguments as in Theorem 1 are applied and 
we can write the solution of (4.11) as the series 

k = l  

+ B I D  aft2+ ~ (--1)k(D-~F)KD-~f~2] 
k = l  

= Ay~ + Byi2 (4.]2) 

where Yi~ (Yi2) is the vector 

D - % , +  
k = l  

k = l  

( -  1)k(D 'F) k D ~f,~, 

(-- 1)k(D ~F) k D ~f,2] 
J 

whose components are denoted by Yilj (Yi~j). The expressions for 5,1,(s) 
~F ~,(i1, i2) , + 

result if we put instead of x only the first term AD-lf~ t + BD-If~2. The 
estimation of the remainder terms is done in the same way as in Theorem 1. 
The substitution of (4.12) into (4.9) and (4.10) gives the closed system of 
equations for A, B, and #: 

[,~(s! -I- ~. .  ] A L ~,q-oqq+hi,  i,+ E Yi, j(gji,-bhji,)-12 
j ~ il,i2 

4- B [gi2il -~ hi2il ~- E yi2J( gji2 -~ hji2)] =0 
j ~ il,i2 

(4.9') 
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A [ g h , 2 + h i t , 2 +  E YhJ(gJ,2+hj~2)]  
j ~ il,i2 

] + B L_~,,~ + g,~i~ + h,~,~ + ~ Yi~(g~,~ + h~)  - ~ = 0 
j ~ il,i2 

(4.10') 

Thus, if 

[ 4+ ,,(s) __ $11 -}-$22_1_ "(Sll --$22) 4S12"$21 
/~cq (i1'i2)' • 2 

From our  estimations it follows easily that  

S11 __ $2  2 __ 2 ( s !  (s) ~_ /~1 

I/~l ~ q s  3/2- 2c(1ne) ' 

~(s! __ 2(s! > qZ3/2 3c(ln~)-~ 
c~,t I ~ t2 

then we have in fact a nonresonant  situation and the 
Theorem 2 pass smoothly  into the formulas of Theorem 1. 

The form of exact e.f. ~ changes essentially if 2(s! and 2(s! are suf- cqt 1 ~,l 2 

ficiently close to each other  and are far from the other  2(~;~ Assume that 

2(s! _ )(s} ~ q s 3 / 2 -  3c(lne) -t 

From (4.1) it follows that 

(H~')(o~) a) (s) (o('!) 

= 2 (~) (,~(~) <o('! ) + t F  (~) (o(~!) + (h (s) (') o:,il",'f'o:,il~ r e , t 2  ~ ~,it~ r ~ a 2  ~ ~,il ~ ~0a,i2) 

=gi~i2 + hqi2 "}- ~(s) (to(S) 00(s! ) -}- (~gibi2 ~,i l t ' f f  cLil~ c~,t 2 

(H~S)(a) ,o (~') ,o('!) 

- (1) = gi2il ~- h.  . -4- 2(s! (co (s) ~(s) ] _[_ Ogibi2 

For  the remainder  terms 6ge~,~: and 6g9~ we have the estimations 
/1,/2 

16gg~l, 16g}~l <~ q s  2 -  c on  e) -1 

The self-adjointness of H~')(~) implies 

(H~S>(~) (o(') ,o(s!) = (H~')(a) co(S! <o<s!) 
mo~,/l~ T0r T~,12~ T0~,I 1 

(4.13) 

formulas of 

Denote  the matrix of the system (4.9'), (4.10') by S = llSktll, k, I =  1, 2. Then  
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i .e .~ 

[(gi2~, + hi2i l )  - (gili2 + hili2)[ ~ q7 2 2~.(~ ~) , 

Thus 
$12" $21 =(gilizq'-hili2)z-1-fl2, [f12] ~ q s  3 + 3c(ln e)-I 

The fact that both roots of (4.13) should be real follows from the self- 
adjointness of H~')(a). | 

We also need a slightly different version of Theorem 2. Assume that 
there are k functions ,o(~) ,,(,) ,o(S! such that: ~ , i  l ' ~ , i 2 ~ ' " ~  rO~ , l  k 

(a,) Z (') Z((p(j],)+m, (~0~, 0) = 

(a2) rn2~>const" In "s, mt+a/>m~, l = 2 , . . . , k - 1  

(a3) )(s) _~(s? 
~O~,l I Cg 12 

1 
~< sl~ + [dist(Z((P(~]l), Z(~~ ] ~ ]  10 + q s  1 + c(ln ~) I 

(a4) J~(~!--2(~! >~q2 ~+'~ k = l , 2 ,  l > 2  

For  other ~(s) j r  i2,...,ik, we have the nonresonant inequalities of 
Definition 1 with respect to all functions q)(~?, 1 ~< l<~k. 

9~,I I 

Theorem :3. The operator H~S)(cQ has two exact e.f. ~/j(s! ~//(,! and 
corresponding e.v. u('! u(s! given by the same expressions and having the r-O~,l I ~ r-Ct,l 2 

same properties as in Theorem 2. 
Proof  of this theorem goes in the same way as that of Theorem 2. 

Remark.  The proofs of Theorems 1 3 can be performed without any 
changes in the slightly more general situation that the intervals in which 
q)('! are different from zero depend on i, s in a different way provided that ct,t 

all other inequalities remain valid. For  example, for the boundary points 
we may have only 

3 in qs 
dist(zj, Z(~o~]))~2 In 1/e 

5. APPLICATION OF THE T H E O R E M S  OF SECTION 4 

d/(s! ~(s! Assume that qS(S!~., coincides with an exact e.f. . . . .  for those n where . . . .  
is different from zero. Then h(s!=O and in the nonresonant case our c~,t 

procedure gives the same m/J(s! Thus we can write r ~ , l  ' 

. . . . .  (F(~! (p~,j)(s) 
,/,(~) - ,o(,) + y~ ,o(~ + 66~,(~) (5 .1)  r r  - -  ~ , i  - -  ( s ) _  ( s )  T O ~ , j  

j~i  )~ 2~,j 
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Take z for which 

[ 3  In q, ] 
dist(z, Z(@~;])) = [_2 In 1/eJ 

[ 3 1 n q , ]  
d i s t ( z -  1, Z(rp(~]))= [ _ ~ j  + 1 

Then q0(~)(z- 1)= 0 and 

(F(*! ta(~)~ 
, b ( ' ! ( z -  1)=  ~ ' -  . . . . . . .  J' (o(s).(z - 1)+66t~(~*)(z - 1) . . . . .  V ; ~ - - ~ s )  . . . .  , 

j # i  --~,z "'~,g 

(5.2) 

Recalling the form of r( ' )  we rewrite (5.2) as follows: 

(s) z (s) 
(~) - 1 )  g (~') 

(s) _ 
[~0 d(Z 1)]= ,l/s!( z 

-~r y~ ; ( , ! _  (s, +6a~ . . . .  - ! )  
" j # i  :~,; ~oe,j 

(5.3) 

(s) (where the remainder term 661~(~} satisfies the same inequalities as 6O~j). 
Let us introduce the truncated Green's function 

~0~.j y) Gl ' ) ( x ,  y; ,~, o~) = ~ q~ (s)( 
_ ~ ( s )  j ,~ A~, j  

Then from (5.3) we get 

O(~)(z - 1) = 

- e G ~ ' ) ( z  - 1, z -  1; ~(') a) -~,;, ~(s 
1 +gGlS ) ( z ,  z -  1; 2 (,) ~) ct,i 

(551 (s) 
4 (5.4) 1- ~(s) ~) 1 + eGl ' ) ( z ,  z - . ,  .~ . i ,  

Put U(')(z; 2, ~ )=  - e G ~ ' ) ( z  - 1, z -  1; 2, c~)(1 +~G~S)(z ,  z -  1; 2, e). We 
have from (5.4) 

a 6 1 0 ~ 5 ( z -  1) 
1 + e G ~ S ) ( z ,  z - 1; j(s) cO 

(5.5) 

This formula has a peculiar meaning. It shows that up to corresponding 
terms the value O ( ~ ( z - 1 )  is obtained from O(2](z) by multiplication by a 
factor that depends primarily on e.f. or almost e.f. concentrated near the 
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point z, i.e., this factor is a function of the potential in the vicinity of z. A 
similar representation is valid in resonant cases of Theorems 2 and 3. 

Now let us take n = z  in (5.1). Then ~p~](z)= ~0(~)(z) and 

x Gl')(z - 1, z; _~,,~('), c~)+6620~}(z )=0 (5.6) 

This gives another representation for ~ ( ' ! ( z - 1 ) :  

(5.7) 

There is some visible difference between (5.4), (5.5), and (5.7). In (5.5) 
the function U(z;2~],~t) is proportional to e. However, in (5.7), 
G~')(z,~'~") ~) takes values of order of unity for typical ~, while 
Gl')(z - 1, z; ,i.(~? c~) typically takes values of order of ;. Thus, e is also 
present implicitly in (5.7). 

In estimations of scalar products (q)('!, (') ~,, ~0~,~) we need other applications 
of the Theorems of Section 4. Assume that for the operator H~'l(e) the 
sequence {qS~]} is given. Consider now the operator H ('~ ' (c~) with 

I ~ -  c~'[ ~< qs c(In e) -1  

Then the system of functions {0(~i)} satisfies all needed assumptions with 
respect to H~)(u ') and we can use it for the construction of e.f. of H~)(~'). It 
is essential that 

- ( s )  q s  2_2 , . (1n~  ) I 

where O(S!i is obtained from the exact e.f. by the truncation to a suitable 
neighborhood of the e.s. 

6. AN I N D U C T I V E  C O N S T R U C T I O N  OF 
N O N R E S O N A N T  E I G E N F U N C T I O N S  OF H(~s+l)(cl) 

Let us consider the operator H~'+~)(~). Using ~(')(0), we shall con- 
struct a basis in which H~ s+ 1)(~) is almost diagonal. This should be done 
with some caution because ~(')(c~) is a discontinuous function of c~. The 
simplest way is the following. We consider T '@(s)(c~ + tins+l) for each t, 
0 ~< t <  q,+ 1, where T is the shift to the left. Each ~ c T- '~( ' ) (~  + too,+ 1) 
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has its e.s. s tart ing with t and lying to the right of t. We would like to take 
as the new basis the union 

~) T- '~( ' ) (~+te~s+l)  
O ~ t < q s + t  

However ,  some complicat ions may  appear .  Indeed,  assume that  7 ~ A~s~ or 
zll~4 ) and there are two resonant  e.f. ~/~(~!~.,a and ~d~('!~.,~ with the same e.s. Z =  
Z ' u  T - m z  '. As was already explained, for 7 ' = ~ + m o 9 ,  there are no 
corresponding e.f. belonging to q~(~)(~'). 

It  might  happen  that,  due to the difference between o9~ and ~o~.+ ~, we 
can have an extra function ~(s) e q)(~)(~ + mOOs+ 1) which in fact is very close 
to one of the functions ,/,(,! d~(~! Certainly this is possible only for ~ very 

"r  c~,tt ~ r ~ , :  2" 

A (')" more  exactly, their distance to the close to the bounda ry  of A}~ ) or  ~.4, 
boundar ies  of these intervals should not  be more  than c o n s t ' s 2 q 7  z. In 
order to avoid this doubling, we proceed as follows: if ~ + mco,+~ e A~.~I ) or 
A~4 ) for some m, 0 ~< m < q,+ ~, and some l and the e.s. of  the corresponding 
e.f. or a lmost  e.f. is Z' u T - m z '  for a finite subset Z '  c Z ~ we take both  e.f. 
or a lmost  e.f. belonging to ~b(+)(~+m~o,+l) and do not  take the 
corresponding e.f. or a lmost  e.f. of 4~(~)(c~ + moo,+ ~). Thus,  the whole set of 
our functions is contained in 

U T-m~(~)(~z"bm~ 
0 <~ rn < q,~ 

but we avoid in this way the functions that  are not  a lmost  o r thogona l  to 
each other. N o w  the index i labels all selected functions 0, i.e., ~(~)e 
T-m~(s)(c~ + tacos+ ~). Denote  also m = ms, e~ = ~ + rn~o, + t. Thus,  Tm'~l~(s! is - -  "r C~,Z 

an e.f. or a lmost  e.f. of  H~')(e +m~co~+ ~). In all further considerat ions the 
new phenomenon  is the dependence of ~ on i. Fo r  each 0~'~] we put  

[ 3 1 n q , ]  
if dist(n, Z ( ~ ; I )  ) ~< L2 l - - i - ~ j  + 2 

OIs+ l)(n ) = O, for other  n 

-(,+~) ~(,+L) is equal  to the Z(p~,s ) = Z ( 0 ~ ] ) .  The  approx ima te  e.v. x~.~ 
corresponding value of A(S)(c~ +micos+ 1). The  validity of (a4) in Section 4 
follows f rom the definition of an a lmost  e.v. (see w in Section 3 and the 
next section) and f rom the inequali ty q,+l/qs<<,const.(s+ 1) 2. We m a y  
also assume that  the inductive process starts with a sufficiently large s and 
the constant  C of w in Section 3 does not  depend on ~. As in Section 4 we 
pass to the functions (o (s +1) 
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Lemma 1. The set of functions (co (s+~)} is a basis in the space of t "r ot,i 
all periodic sequences of the period q~+ ~. It satisfies (a3) of Section 4. 

Proof of the lemma is given in Appendix B. In this section we consider 
a nonresonant case. Theorem 1 of Section 4 gives the existence of an exact 
e.f. O (s+ ~) of H (s+ 1)(~),  which can be written in the form 

[ F ( s + l ) . 4 . . h ( s + l  ) ( s + l )  
~k('.+~)--(o(s.+l)+~ '-='g - " ~ "  'q~'J )o('~-1)+6~0~,. +t) (6.1) . . . . .  ~,, ), (~! _ ) ( ~ ) .  - ~ . J  

The last term will be treated systematically as a remainder term. 
The sum in (6.1) is taken over such j  that 

F 3 1 n q , ]  
dist(Z(qr ~)), Z(cp~)+ 1))) ~< 2 1_2 1 - ~ J  

As in Section 5, take z for which 

= [ 3 1 n q s ~  
dist(z, Z(q)~,+ll)) [_21n 1/el 

~ 3 In q,,.] 
dist(z - 1, Z ( q ) ~  + ~))) = 12 in 1/eJ + 1 

Then ( o ( ' + l l ( z  - 1 ) = 0  and from (6.1) 

Ip(s-I- 1 )(Z 1 ) =  (s) 1) (~(s+ .~(s! 0~) - - e O ~ . i ( z -  1 ) ( z -  1, z; ,~ , , ,  2r - - t  

~s~ -~s+l 1 .~s!  ~)+6~3~,~.+,~ (6.2) - s r  G ,  I ( z  - 1, z - . ,  ,~ , , ,  

Here (71 s+ ~)(x, y; 2, c~) are truncated Green's functions constructed with the 
help of the functions (o(~ + ~ I ro~,j 

The difference between (6.2) and the formulas of Section 5 is due to 
the fact that in (6.2) e.f. or almost e.f. of H~')(c~) with different c~ enter. 
However, this dependence also will be considered as a small correction. We 
write 

~(s) O:i) dl( , !(Z' l+(~)41p(s+l)(z_l)  (6.3) -=.~r . . . . . . . .  s , 

Normally U(S)(z; ).('! ~)  takes values of the order of unity and the correc- ~r162 
tion is not more than q - 2 - m n  ~)-'. If @(~](z) is different from zero, we can 
rewrite (6.3) as follows: 

@ (s_i-- l )( Z 1 ) = ~ ( ~ ' ] ( z ) ~ g ( s ' ) ( Z ; ~ ( s )  Oei) _~ (~(~ 5 ( s + l )  ~ , i  (z-- 1)] (6.4) 
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This formula is quite analogous to (5.5). We can now use (5.3)-(5.5) 
in order to get the values of ~//('+ ~/(z) for other z with 

s+l) [-3 lnq ,  7 
dis t (z ,Z(O: , i  ))- Ls~]  

Let us consider also (6.1) for the same z as in (6.4). Then 

t)(s+ s~b(').fz 1 )Gls+~)(z , z ; , t  ('~ c~) ~,, ~l(z)= ~s~ 

- -  ~O(~:'),(Z) G I  s +  1)(z -- t ,  Z; ~(~!,, ~) ~- 6(~6 O(~:', + 1)(Z) 

= ~ ) i ( z  - s,lt(')(z~,.,,_ - 1 ) Gl')(z, z; 2 ~)~.,, ~) 

- ~O~",(z) a l ' ~ ( z -  1, ~; ~;,~, ~) + 66~q,~:, + ~(~1 

In the remainder terms 666~b c'+~) and 66~b ( '+~ ,~.~ ~,~ we included the errors 
arising from h~] and the differences between GI "+ ~) and GI "/. Using (5.6), 
we have 

(s+l) i [ l (S ! ( z )  0~,, ( z )=  + ~6s 0(~,+ 'l(z) (6.5) r ~,t t 

Lemma 2: 

1608 0~', .+ l l(z)l ~ q~72- c(ln s) -t 

Proof of this lemma is straightforward. The formula (6.5) shows that 
~pls+ l/(z ) differs from ~ ] ( z )  by a small correction. If 

IO~](z)l > /qs  3/2+ c(ln s) -1  

then 

0(s+ ' ) (z)= 0~)(z)[  1 + 6 6 9 ~ ] ( z ) ]  (6.6) 

Similar arguments work at points n where 

dist(n, Z(O~])  <~ dist(z, Z(~p~))) 

They mean that the corrections to e.f. at points n within the considered 
neighborhoods of the e.s. are of order of qF 2-c(=n ~)-~ and thus the values of 
e.f. converge exponentially rapidly to limits. 

7. A M E C H A N I S M  OF D E C A Y  OF E I G E N F U N C T I O N S  

In this section we shall derive the exponential decay of the e.f. ~ +  ~). 
In doing this we shall also get estimations from below for e.f. valid at most 
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points. Assume that for all t, sl % t<~s2, we have a sequence of  e.f. ~/J('! and r ~,t 
corresponding e.v. ~ r s 2 - s l  ~ ps, p a constant.  In fact, i depends on t, "~cqi, 
but we do not  incorporate  that  now. In this section we consider a non-  
resonant  case, i.e., we assume that  all ~b('! are constructed with the help of TC~,I 
Theorem 1 of Section 4. In fact, the difference between the resonant  and 
nonresonant  cases is not  impor tan t  here. 

In the interval [Sl, s2] take those tu)~ Is1, s2], 1 ~< l~< r, where 

y ( l ) = [ 3 l n q t ( l )  1 1) 

LSCn ] Z j  >-r  :- 

< z (z) and consider the points z (n, 1 ~<l~<r, where z u+ ~ and 
, (,)Z(r z ~ : z  (1), = disttz , yU), z2 = z (a. Assume that  sl = t m, s~ t (r). We 

have 

r-- 1 i/l(t(.I))(Z(1)] 
'l'(s2)IZ ~ H r~,l  : 
t~'~,, ~. 2,~ = ] : 1  O~l,{f 1))( z( /)-]-  1) 

x [ I  ('(") 1 ) :l,+,,_<:<:l,) r (z+ 0(,•/(. ~ (7.1) ~,i t a l l  

Some danger  comes from factors that are too large or too small. If, for 
example, 

• ( ' % ( z  - 1)/@(/~/I)(z) ~< �89 + max IV(cOl ] -1 c~ d ~ 

then from the equat ion for the e.f. written at z -  1 we have 

( t  (11) IO. , ,  ( z  - 2 ) /~ ' / , 1 ' ) ( z )1  = [O~',~)'(z - 2 ) /O~" , ' b ( z  1)1 

1)hll(,(. 'b( z ll r x / i  

and 

(7.2) 

The same inequality is valid for 

~J(tl'))(z(nl/~h('I:-ll)(z(n + 1) ~,i ,, :t'r o:,i 

as will be shown later. N o w  we consider the product  

I~--- H U(sI ) (z ;  Z1, ~ )  
z2"~z~z I 
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where we put 2~ = 2~,~(~). Recall that (see Section 5) 

U(')(z; 2, ~) = - ~  
G l ' ) ( z -  1, z -  1; Z, ~) 
1 + eGlS)(z, z - 1; 2, ~) 

Lemma 4. Let X c  [Z2, Z1] be the set of those z for which 

Then 

Gl ' ) ( z  - 1, z -  1; 2, e) 
1 / -  

Z - V ( ( z  -- 1 ) o~,~ + ~) ~< const �9 ,de  

tGl ' ) (z ,  z -  1; R, c01 ~ const 

card(X)/> ( 1 - const �9 el/4)(z~ - z2) 

Before giving the proof of the lemma, we shall derive from it the 
exponential decay of e.f. In our situation we can apply Theorem 1 and 
(5.4). This yields 

(sO 
G, i  (z) ,I.",>,z 

O(J?(z2) = H i:,~ z �9 ~P~,i ( + 1 )  ~'~J~ 1, 
Z2~<Z<Z I 

(SI) G.  (:) 
= H d/(':)(z + 1) 

z e [ z 2 , z l ] n X  r ~ , l  

(s~) 

x ~ G,, (~) . . ( . , I , .  (s:) ~@ [22,Z1]\)( O:,i (Z-~- l )  tY:x'i ~ 1 ]  

= H1 " H 2  " ,h(s: ) [ .~ ?'~:,i k ~ l !  

By definition, we include in H 2 the terms where 

(s~) ~ ]  
~=, i(z) [X+maxlV(~) l ]  1 (Sl) ~. i  (z+  1) "~4 

and the next ones. Remark that if 

(st) 4,~,,(z) I 8 ~ - -  ~>- [ 1 + m a x  i V(c0i] 
~.,i (z + 1)[ ~ 

then from the equality for the e.f. with the e.v. E 

[ ~})(z  + 2) 

]G.  (z 
(sl) ) _]0~. (~+2)] ~c;~>(~) 
~ - - -  �9 (~j) G,, (: + I ~ , ,  ( z )  ! 1 
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~< max= I g(c01 + IEI ~ ] 
1-t- 

e 8[1 +max= I g(~)l]J 8 

x [1 + max I r(~)l 1 -~ 

~<5e[ l+max~ IV(e)l] 1 

32 

g 
~<~ [1 +max~ I V(~)I ] 1 

i.e., these terms enter into/12. Therefore, for z belonging to / /1  we have 

~'1) ) +max~ [ V(cz)] ] e -- ~b~, i (z) ~<4[1 

4 [ l + m a x ~  F V(c0I] ~< <) ~ , ;  (z + 1 e 

and for the whole product / / 2  we have a trivial estimation 

4:2 :' {4[l +max~'V(cO']} 

~< [//2t 

~< 4~'-z2 { 4[1 +max~ e V(${)[]} (zl-z2)'c~ (7.3) 

which follows from (7.2) if we unite small factors in pairs and, following 
them, large factors. 

From (7.3) we see that for z +  1 e X t h e  value 

~(s!)(a]l >/q~73/2 + . . . .  ton  e) 1 st  ', Ii 

and from (5.4) for such z + 1 

(sD 0=,, (z) 
~,(2)(z+ 1) 2 1 -  V(zcOs+~l) ~<c~ 

Thus, assuming that z2 e X, we have the estimations from both sides for 
ip (s t ) ( - ,  ~. c~,i ~,~21' 

W'~,i ',~1! 

<~(4a)Zl_Z2expfconst " ~ " ~  ( Z l g l / 4  --Z2) 1 (7.4) 
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The eigenfunctions {') O~,;(z) with variable t differ from O(~})(z) by terms not 

more than q-2-c0n~)- ' .  This follows again from Theorem 1 and Sections 5 
and 6. Thus, we get the exponential decay of the value of O(]~}(z2) and in 
the same way the exponential decay in other points. 

P r o o f  o f  L e m m a  4 .  From the definitions, 

U(Sl)(z;  "~1, 0~)=  U ( S l ) ( z 1 ,  5.1,  (z ~ - ( D s ( Z -  Z l )  ) 

Thus, we have to show that the needed estimations hold for most z. We 
shall use some information concerning the r.z. (see Sections 3, 4, and 8; in 
fact, Section 8 is independent of Section 7 and the reader interested in 
details can read Section 8 before this proof). Each r.z. is an interval A}~), 
i =  1, 4, on the e axis. Let us denote its range and width by r and m. We 
have a chain of intervals 

- {2) A(s{m 1)) A(sIm}) A(S l  ) A 0 )  ~ A  ts ) ~  . . .  ~ ~ = 
ll,il 12,i2 Im- l,im - l lm,im l,i 

where Sl >~ s (m) > s TM- ~l > . . .  > s{2) > s{1) = F s  are the numbers of steps of 
our procedure where the e.s. of the corresponding functions changes. The 
next interval A{s{~) is contained in the intersection ~Ik, ik 

A(s (k-l}) ~ m  k (A{s{ k-t})  ] 
lk- l , ik  1 ('~ ~OJs(k-t)\ [k l , ik- I  ] 

Thus, 

A s (k-It) I - 1 / 4  
mk >~ ~;k l,ik-I 

as can be easily derived from the properties of ~o; here I'l means the length. 
Also it follows from the construction that 

[A (~l*l) ~< (const.  e) m Ik ik 

and thus 

3 (~~) ~< (const" e) diamZ l,i 

card{Al3') I diam Z = t) <~ exp(const �9 f~) 

for some ? < 1. In fact, the last inequality can be given more exactly. 
Let us call the r.z. A {~'} large if A (s') ~>es - e  where @ will be specified l,i l i  

later. Other r.z. are called small. Small r.z. have the following important  
property: 

A. For  each small r.z. A (s~} the number of z among Zz<~Z<<,z  1 for l,i 
which c~ + ~ o , ( z - z l )  ~ A~9 is not more than 1. 
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The large r.z. have the following proper ty :  

B. The n u m b e r  of  z a m o n g  z2 < z ~< z~ for which 

is not  more  than  

o~+~Os(Z-Z l )~  ~ R ~ A(s~) co s l , i  

]/[ ~< 2 d i a m  Z 

2(diam Z ) E ( z l - z 2 )  A (sl) + I n  ~ s]  l , i  

Here Z is the e.s. of  the cor responding  e.f. for ~ e A  (s~) l , i  �9 

Proper ty  B and previous es t imat ions yield: 

C. The n u m b e r  of  z a m o n g  z2 < z <~ z~ for which 

~+O~s(Z-Zl )e  ~) R t a ~1 co~ l, i 

Ill ~< 2 d i a m  Z 

for at least one large r.z. is not  more  than  

const  �9 e(zl  - z2) + exp {const - (ln Sl )~1} 

for some Y l < 1. 
Indeed, this number  is es t imated from above  by the sum 

( z l - z 2 ) ~  ' A(sl)t,i + N l n 3 s l  

where Z '  is the sum over  large r.z. and N is the total  numbe r  of large r.z. 
F r o m  what  was said above it follows that  N~<expE( lns l )  71] for some 
71 < 1 and Z '  A(S~) ~<const 'e .  1,i  

Let us take z not  satisfying p roper ty  C. We have U(S')(z;21, ct)= 
-~u(S~(z; 21, ~), 

u(S~)(z; 21, ~) = Gl~)(z - l, z -  1; "~1 ,  ~)E1 + eG~t)(z - 1, z; )ol, o~)] 1 

We shall investigate the first factor; the second one is treated in a similar 
way. Let us write 

GlS~)(z - 1, z -  1; 21, ~) 

(s~) [~o~,j ( z -  1t] 2 

J 

=E E 
r>~0  j :  dist(Z(~p(~ll),z - 1) = r  

E~g~?(;- 1)] 2 

- ~ l - - } - ~ s ~  ) 
(7.4) 

822/46/5-6-7 
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First we consider the term with r = 0. Our  assumptions and definitions give 
that either e is outside all r.z. or  it is contained in a small r.z. A ('~ l , i  " 

In the first case the value r = 0 corresponds to only one co(s0 for which 7- ~,j 
Z(cp(~} l )=z -1  and thus q ) ( ,~} ) (z -1 )>~ l -cons t . e .  Our  procedure also 
shows that the shift in the e.v. from the unper turbed e.v. V(z(o s + ~) is not  
more than const .e .  

In the second case our  procedure gives the existence of two resonant  
functions (o('~) and (o(~~) whose e.s. has the form r ~,JI r ~,12 

Z = ( z - 1 ) w ( z - l + m ) ,  m~>@cons t .  In lns~ 

These functions can be written in the form 

p(sQ = 01  ~,Jt a l l  q- a 1 2 0 2  

@ 1($1) = ~'/1 ~,J2 a21 q- a 2 2 0 2  

where the matrix 

a l l  a12 

a21 a22 

differs from an or thogonal  matrix to an error that is not  more than 
(const .  g) m ~<s . . . .  t - ~  and the functions 01 and 01/2 a r e  concentrated near 
( z -  1) and ( z -  1 + m ) ,  respectively, in the sense that  

0 1 ( z -  1)~> I - const-  e, 101(n)l ~< (cons t"  g) dist( . . . . .  1) 

02(Z-- 1 +m)>~ 1 - -cons t "  

102(n)1 ~< (cons t -e)  ai~t(n': 1 +m) 

F r o m  these estimations and the nonresonant  condit ion it follows easily that 

[e~,s~(z-1)] 2 [ e ~ , j : ( z - 1 ) ] :  

21 ). (*0 ~'l ~ (sO 
- -  ~o~,,11 - -  A o ~ , j  2 

2 2 
a l  I -}- a21 - Z - - ~ )  02(z - 1) + an error 

1 c~,j I 

and the error is not  more than s . . . .  t. 9. Thus, again the value of the sum 
differs from 1 / { 2 1 -  V [ ( z -  1)(o, + e ]  } to an error  not  more than const ,  e. 

Our  next step is to prove that the rest of the sum (7.4) with r > 0 is 
relatively small. The main idea is to show that  for typical z - 1  the 
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denominators decrease more slowly than the numerators, thus making all 
terms smaller and smaller. 

To give more precise arguments, let us consider for each r those 
( z -  1) for which 

min 1 2 1 - - ) ,  (sl-) ~>x/Tr 10 
(7.5) 

j: dist(Z(q)(~))), z - 1 ) = r 

The same arguments as above show that in this case 

[~o( '0(z- 1)]2 [ 
J :  E ~,s, 

_ ( s O  t �9 (s[) 2 1  2 ~ , j  i d l s t ( Z ( ~ o  ~ . - -  1 ) = r - .T~.] , ,- 

~< (const. g)r-- 1 ,,/7" ( r - -  1) ~~ 

Therefore Zr  > 1 Jr ~< const �9 x/7. We have to investigate only the cardinality 
of ( z - 1 )  for which (7.5) holds. Recall the structure of the multivalued 
function AUl( Its range is a union of intervals separated by f.z. The length 
of each interval is not more than 

const - qst 1 - c(ln e) -1 

Introduce neighborhoods Or()q) whose radii are contained between 
x/7 r m and 2 x /7  r -  s0 and whose endpoints are endpoints of f.z. For  such 
neighborhoods, (A(')) -~(Or()q)) = A~(2~) is a union of two intervals. As 
follows from the inductive hypothesis of Section 3, jAr(~q) j ~< const '  g1/4r-5. 
If z -  1 is such that 

O~+tco,l~Ar(21) forall  t, ] t - - ( z - - 1 ) [ < ~ r  (7.6) 

and r ~> 1, then (7.5) is valid. The cardinality of z, for which c~ + to) s eA~(21) 
for at least one t, I t -  ( z -  1)1 ~ r, is not more than c o n s t ,  g l / 4 r - 4 ( z 1 -  z2). 

Thus, provided that r < ~ ( z ~ - z 2 )  3/4, the cardinality of ( z - 1 )  for which 
(7.5) is violated for at least one t and r~< (z~--Z2) 3/4 is more than const. 
81/4(Z1 - -  Z2). If r > (Z 1 - -  22) 3/4 and :t + t%  e A~(21) for some t, 
I t -  ( z -  1)1 ~< r, then it would violate the nonresonance condition. | 

The estimation of the product in (7.l) is the key to the proof of the 
total exponential decay of e.f. We decompose the whole interval [z, Z] onto 
subintervals [z , ,  z~+ ~], z = Zo, Zr +1 = Z,  1 ~< i ~ r, and z lies to the left of the 
e.s.; 5 is the left boundary of Z(~l~(s! ~ In each subinterval we include the \ r ~,l I / "  
dependence of the e.v. and the phase on the step of the procedure into the 
remainder term. The estimation of I in Lemma 4 shows that 

1 ~ ,  1 In [I1 In e + In (7.7) 
z i - z 2  e l - z 2  12 l -  V [ ( z -  1) co,+ ~]1 
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where Z '  means that the summation goes over z for which the absolute 
value of the corresponding logarithm is not more than ln(1/e)+ const. The 
statement of Lemma 4 shows that the frequency of such z is large. Thus, 
the last term in (7.7) is bounded and for sufficiently small e the main term 
is Ine. This gives the exponential decay at final points z of the considered 
neighborhoods. This character of decay is not changed in other points 
because the corrections are of the order of qs -2-c(lne)-~, as is explained in 
Section 5. Such smallness has no influence on the smallness of the main 
estimation of the e.f. 

The formula (7.7) is close in spirit to the well-known Thouless formula 
for the Liapunov exponent./32) In fact, (7.7) gives, in the main order in ~, 
the Thouless formula. Apparently the decay of e.f. is determined completely 
by the Thouless formula, but it depends on terms of higher order in e, for 
which it is difficult to follow. 

8. AN INDUCTIVE  C O N S T R U C T I O N  A N D  EXPONENTIAL 
DECAY OF THE RESONANT E IGENFUNCTIONS 

( s + l )  We use the same basis {~o~, i } as in the beginning of Section 6 (see 
Lemma 1) and corresponding e.v. or almost e.v, 2~) + 1) We shall discuss in 
this section the following topics. 

1. The behavior under the transition s ~ s  + 1 of the already con- 
structed f.z. 

2. The appearance and the width of the new f.z. 

3. The construction of small r.z. and corresponding almost e.f. 

4. The exponential decay of the resonant e.f. and almost e.f. 

Before doing this we introduce some notations. We consider for each t 
the points c~=~(t, l, i), 1~<i~<4, where Al~)(~)=Al~)(~+tCOs+l) and their 
neighborhoods O(~) and U(c~), U(~) c O(~), whose radii are equal, respec- 
tively, to u,+i'-3/2 and (s 5 +�89 -1. Let us show that the neighborhoods U(~) 
appearing for different t and fixed/, i do not intersect each other. Indeed, if 
for some 41, ~2 we would have U(~l)O U(~2) ~ ,  then ]~1-c~2l ~">~ 3/2 ~ -  z ' t / s  + 1 �9 

Denoting by t~, t 2 the corresponding shifts for ~1, ~2, we can write 

IA}.~)(~z + m2COs+ , ) - -  A ~,s)(~l )1 

= A~)(a2) -- A~:~)(Y~)I ~< const '  Us+"--3/21 

Therefore, either 

dist(c~2 + t2o)s+ 1 ~ 1 )  ~ cons t . . -3 /2  ' ~ / s +  1 
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o r  

dist(~2 + t2 cos + ~, ~ + t~ co~ + 1 ) <~ const  �9 q~-+3{ 2 

in view of the inductive assumpt ions  w in Section 3. Thus,  either 

dist(t2co,+ 1 21) ~< cons t .  ,,-3/2 " / s +  1 

o r  

- -  3 / 2  dist((t2 - t l)  co,+ l, 21) ~< const  �9 ~,+ 1 

Both inequalities contradic t  propert ies  of  co s+l and this implies the desired 
result. 

For  each c~ and l, i take the maximal  set cq, c~2,..., ~k, ~b = ~b(tb, l, i), 
1 ~ b ~< k, such that  c~ e O((q)  c~ O(~2) c~ . . .  c~ O(~k), IO(~b)l = 2 (S  5 + �89 5, 
t l < t z <  . . .  < t~ .  It  follows easily f rom the const ruct ion (see also Sec- 
t ion 9) that  ti+ ~ ~> t 2. Thus,  we can use Theorem 3 and the inequali ty k ~< 
const �9 Ins.  

1. Behavior  of  a l ready constructed f.z. Consider  the case when 2 (s+l~ 
~ , i  I ' 

). !~.+ ~) ~ A(~'l(c~ + tcos+ l) with the same t, i.e., the corresponding exact e.f. 
that  generated (o (s+ ~p(s+ ~) -~.~ 1), ~.~2 were resonant  e.f. Then Theorems  2~4 give the 
form of the exact e.f. for H~ "+ ~)(c~). C o m p a r i n g  the expressions for the e.v. 
writ ten at the sth step fi la Section 5 and the expression writ ten at the 

( s +  1) (s + 1)th step, which takes into account  the per tu rba t ion  terms h~ , we 
immediate ly  see that  the error  in the e.v. p(,+~.,, i), /~(,+~,~2 is not more  than 

- - 2  2 e ( l n  e )  1 qs+l  . This shows also that  if the width of f.z. is bigger than q, 2+a~ 
and ~ >> c(ln l /e) l, then the posi t ion and the size of the new f.z. change 
relatively little. 

The  e.s. of  the new e.f. is not  changed and the formulas  for the values 
of e.f. at  new points  are the same, up to some remainder  terms, as in the 
nonresonan t  cases. Thus,  the mechanism for the exponent ia l  decay of e.f. 
investigated in Section 7 works  in the same manner .  

2. Appearence  of the new f.z. According to our  construct ion 011 in 
Section 3), we define at the sth step small r.z. if t>~ ( 2 -  6~) In q , .  (ln l/g) -1 
In passing f rom s ~ s + 1 there might  appea r  t for which 

( 2 - 3 ~ ) l n q s  In < ~ t < ( 2 - 6 1 ) l n q s + l  In 

For  these t take ~ = ~(t , / ,  i) and the ne ighborhood  O(~). Fo r  e e O(~) we 
can use Theorems  2 and 3, which give the expressions for the new resonant  
e.f. and e.v. We have to investigate the width of the new f.z. and  in par-  
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ticular to show that it is different from zero. This would mean that in our 
problem there are no potentials with a finite number of f.z., provided that 
is small enough. 

The values of the exact e.v. are given by formula (4.1) or its analogs in 
Theorem 3. The function Sl l - s12  changes its sign with the change of ~ in 
view of our inductive assumptions. Thus, the width of the new f.z. is deter- 
mined by the product slz's21. We showed in Section 4 that s~2"SzL = 
(gili2 q'- hiti2) 2 -{- (~2, where [62[ ~< qs  2-2c(lne)-~. Also, it was already estimated 
that ]hi2i~] <~q~-2-~.o,~ ~. We have 

gi~i2 = ( F(s !  CD(s! ] -1- (5~,  1(5~ I ~ q 2 c(ln e . ) '  
c~,tl ~ 7- -~,12 ! s 

Denote by z and z + 1 the points lying between Z(~o~!~) and Z(<p~,i2)~) where 
F~! is different from zero. Then 3r 

(F ~1 ,o~s!i=-eE~0~]~(z) I~)z 1)~0c~]~(z)] (8.1) 

Rewrite (8.1) using (6.4): 

_ ~ ~s) z ~o~]~(z)[U~+l(z 1; ~"~ ~) Ul~l(z; ~ !  - - q'~,~,( ) + + ~ ) 3  + 63 (8 .2 )  �9 " ~ , i  2 , �9 ~cr , 

where 6 3 is again a remainder term. Now we shall use the remark made in 
Section 4. Namely, the boundary where we make the cutoff of o~! is not - r~ , l  

rigid. We can replace z by any point z' in the interval 

I z - z ' l<~o(1)  In s, o ( 1 ) - , 0  as e ~ 0  

and all estimations will remain valid. As was shown in Section 7, among 
these points z' a relatively dense set consists of points z' where 

(s) t ~ a 3/2 + c(ln e) 1 I~o=,e,(z )1 ~ - _  

I (/9 ~']2 ( Z t ) ,  ~'~ "'t 1/2 -- 61 + In c ( 'n  8 ) ~ / s  

Here one has to use the inequalities 

,s, , ( Z(p~, i~) )+~lnqs( ln~)  -1 ~<lnq, In o(1) 

dis t ( z ' ,Z (qo~ ,~2)+(~-61) lnqs ( lne )  -1 

~<lnq~ In o(1), o(1)-- ,0 as e ~ 0  
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and the estimations from below of Cn(~) ~(s) which were in fact derived in "F ~,ll  ~ "t~ 0t, i2 ~ 

Section 7 and are also valid here because the formulas for the values of e.f. 
at new points are the same in the resonant and nonresonant cases. Also, it 
was shown in Section 7 that for a relatively dense set of z' for each function 
U ( ' ) ( z ' + l ; )  (~) ~), U(')tz"), u) ~ ) w e h a v e  "~ :~,i2 ~ \ ~ ~ , i l  ~ 

O<const~< IU(')(z'+ 1;; (') cQ+ U(')(z;~ (~) a)l ~cons t  

Thus, if in (8.2) we take a typical z' for which all written estimations hold, 
then we get the estimation of the width of the new r.z., which is not less 
than ~so-Z+eq +~ For the e.f. ~.~/~ (s+~) we put 

Z(l[i(s+ 1)] _ _  Z((o(s! ] k) TtZ(l~o(s~2) 
\ r c z , i  ! - -  ~ T o : , t l l  

. 

t,l,i, 
Construction of small r.z. and corresponding almost e.f. For each 

t > ( 2 - a l ) l n  q,+l In 

we consider g(t, l, i) and take neighborhoods 0~(~) of radius q s  (2-61)-3m/2 

where 

!)--1 ~<t< 3 )]  In q, ( 2 - - ~ 1 + ~ m )  In q~ (ln [ 2 - - 6 ~ + ~ ( m +  1 ( i n ! )  -~ 

These neighborhoods do not overlap for fixed l, i. We can use Theorem 2 
or 3 of Section 4 for the construction of exact e.f. Now we shall perform an 
operation that can be called a cut of the e.f. Namely, the exact e.f. is written 
in the form 

F s) 4- h (s) m(s)] ) 
~' i i  - "~r "Y~'JJ (s) 

�9 ,F ~,(i1,i2), + ( ( 0  (s!  

j va  il,i 2 --c~dl ~cqj 

. ~. ,2,  (s)  s  (~o('! + y. .~,! _.~(s~ ~o,j + v v ' F  ~x,(il,i2) + B +  \ ~,,2 j~il,i2 ~,,2 ~,J 

\ c ~ , i l -  ' ' g , l l  ~ "r" ~: , j!  ( s ) )  ,/,u+~) = A  {(o('! IF(~) q-h(,! to(s)] 

j ~ i l , i 2  ~oe,ii ~ , j  

( (F(S) Z-h(s) (s) ) 
(P ~,J) ~iA,l,(s) q) ~,i2 -~  E \ u,i2 - -  ~ , i2 '  (.9) 

j ~ il,i2 , ,J 
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where 66,t,(~) are the remainder  terms. We take as a lmost  e.f. the Y~,( i I , i2) ,  �9 
expressions 

F(s! 4- h (s) (s) ~,,~- ~,~, (P~,j) q)(s+ 1) = co(s) co(s). 
Cqil r ~ , i l  Ac  E 2 ( s )  - -  2 (S ) "  "c ~ , j  

j ~ i l  ~,ll  --ct ,J 

= A  ~/ ( s  + 1) ff/(s + 1) 
+ %(i1, i2) ,+ -~  A ~ , ( i1 , i2) , -  -~- " ' "  

(F( ' )  4-h (~) o('),) 
p(S+ 1) = to(S) (o(S). 

~,i2 "r ~,i2 "~ E ~ (s) - -  2 ( s )  "r cr 
j r i2 ~o:,i2 - - ~ , J  

= B+ ,I,(s) -+- B ,i,(s) 
..k- ~,(il,i2), + - -  _ y. c~,(i1,i2) ' -  -I- " ' "  

where dots mean  the remainder  terms. For  the approx ima te  e.v. we take 

1 
+ A_ (2~.i2 + ,2,2 A 2  + A 2 EA2+(,~(s~l_l_h!s). q_gibil  _ q,q 2 (s) h(s}_l_gi2i2)] 

1 
8~+ + 8  2 Es~+(,~(,! +h!+! +g,,i ,)+ 8~ (,~(s! +h!s! +g,~i~)] _ \ N,l I - -  . - l l l l  --  \ fs 2 - -  12l 2 

4. The exponential  decay of the resonant  e.f. is investigated in the 
same manner  as in the resonant  case, because the formulas  for the con- 
t inuat ion of the exact e.f. are the same up to some correcting terms. 

9. AN OUTLOOK ON THE WHOLE iNDUCTIVE 
PROCEDURE AND THE ANALYSIS OF THE 
PROPERTIES OF A(S+l)(a) 

As noted in Section 1, our  analysis is based upon  the renormal iza t ion  
group approach.  Take  H~'+l l (e) .  F o r  any x,  - � 8 9 1 8 9  we 
remark  that  on the interval Iz - xl ~< const �9 s the opera to r  H~ "+ 1)(e) is close 
to the opera to r  T XH~')(c~ +xco ,+  1) TX and the difference is of  an order  of 
magni tude  not  more  than q z-c0~ ~). This follows f rom the propert ies  of the 
rota t ion number  co and the smoothness  of the potential.  If, in view of the 
inductive assumptions,  we know the structure and the localization proper-  
ties of e.f. or a lmost  e.f. of all opera tors  H~')(c~), then we make  the cutoff of 
all these functions considering their restrictions to the intervals of order 
3 In qs (ln 1/8)  - 1  centered at the e.s. of  the functions. If the values of e.f. or 
a lmost  e.f. decay as (Ce)",  where n is the distance to the e.s., then for typical 
n the values of e.f. or a lmost  e.f. at  the ends of the intervals are of  the order  
qs3/2 c(i,,) 1. This impor tan t  s ta tement  is p roven  in Sec t ion7  and the 
corresponding inequalities are in fact valid f rom both  sides at mos t  points. 
In passing from s ~ s +  1 we consider for each x the opera to r  
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H~')(c~ + (o,+~x) and take e.f. or almost e.f. ,/,(~) for which the e.s. lies ~C~ +O)s+lX,J 
to the right of zero and contains zero. From our procedure it follows that (!)1 

diam(Z(~t~)))~<const.  In s 

and therefore their choice is free of any contradictions arising from periodic 
boundary conditions. Then we take "r ~,l,(s) and make its cutoff in ~ +~s+lX, j  
the manner  described above: Denote by so ('+ ~) the functions of the basis T ~ , j  

thus obtained. We have 

H ~ S + l ) ( ~ ) o ( s + l ) = " ( s + l ) o ( ~ + l )  V(s+l) h(~+l) T ~ , j  A~,j  r ~ , j  -~ - -~ , j  Jr "'a,j 

The vector F(~ + 1) is concentrated at quite a few points, normally four, and 
there has typically small values of order q~.3/12+-"(t~ ~)-~. The vector h(~ + 1) is 
different from zero on the interval where o ( ~  - 1) is different from zero, i.e., TO~,J 

on the interval whose length is of the order of const �9 (ln l / e ) -  l s and there 
takes values not more than qS 2-c(l"~)-~. Thus, h(~; + 1) is also a "local vec- 
tor." 

Now we construct exact e.f. of H~ ~+ ll(a) using the formulas of the per- 
turbation theory derived in Section 4. The simplest situation arises in the 
nonresonant case, which takes place for most c~. For  a given ~o (s+ ~) in the " r ~ , i  

nonresonant case the difference 2(~. + 1 ) -  (s+ _,~., 2~,j 1)[ can become small only if 
the distance between Z(~0(~ + 1)) and Z(~0(~f 1)) is sufficiently large. The for- 
mulas of Section 4 give in the nonresonant case the representation of the 
exact e.f. in the form 

The remainder term 66~p~i + 1)is small everywhere and only plays the role of 
a small correction. The term 6~0(~ + 1) gives the main correction. It is small 
on the set where o (s+ 1) is different from zero and coincides with the e.f. at 
the boundary. More precisely, it has there an order not more than 
q s  2 c0ne)-l. Its form is essential near the boundary, where it really shows 
how the process of continuation of the e.f. looks. We have derived in Sec- 
tions 4-6 formulas that imply that the value of the e.f. at the next point is 
equal to the product of the value of the e.f. at the previous point and some 
factor U that depends essentially on the e.f. concentrated near this point 
plus some corrections. As a result, we get that in the Anderson localization 
regime with exponential decay of e.f. the values of e.f. can be represented as 
some products of "local" functions, plus small corrections. 

These correcting terms, which are always small, become important  
when the value of the e.f. is anomalously small. Using the equality for the 
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e.f., we see immediately in this case that the values of the e.f. in the 
neighboring points are almost the same up to the sign. This gives a 
possibility of obtaining a convenient expression for the continued e.f. that is 
"uniformly good" for all values of U, because the e.f. is too small or too 
large when U becomes too large or too small at the corresponding points. 
Using this fact, we get in Section 7 estimations of e.f. from below. 

In the resonant case some eigenvalues 2 ~s+ 1) may be too close to each :r 

other compared with the distances to their e.s. It  is important  that only two 
of them may be too close. This is a direct consequence of the fact that the 
potential V takes each value at not more than two points. Now one has to 
distinguish two cases. In the first case for 2~ + 1) there are no other 2 (~+ 1) e , j  

that might be too close to it. Here we use Theorem 3, which shows that the 
exact e.f. looks as in the nonresonant case. If there is one pair of e.v. 
2(s+ )1,+1) whose difference is too small (in fact, less than qj~+c(ln~)-! ~,il 1), "~,i2 
then two e.f. might appear  of a new form, which are, in the main order, 
linear combinations of -~,i,r~ ~), ~,~<~ The coefficients of these linear com- 
binations depend on the distance between the e.s. of ~0 ('+ ~) and ~0 ~+ 1) and Zqil 0;,12 

the matrix of the coefficients is close to an orthogonal two-dimensional 
matrix. Two eigenvalues of corresponding e.f. differ by a number also 
depending on the same distance. The intervals on the spectral axis between 
these numbers give rise to forbidden zones (f.z. or gaps). We choose the 
value of the parameter  measuring the distance between e.s. in such a way 
that its length is of order q7 2+a~. Here 6~ must be much greater than 
c(ln l/e)-~, but much less than 1. In this case the perturbations appearing 
for increasing s do not destroy the f.z. and at the same time are so small 
that we still can use the formulas of perturbation theory. The values of new 
e.f. in the resonant case are obtained with the help of the same "local 
functions" as in the nonresonant case. Therefore the analysis of the decay 
of the resonant e.f. is the same as in the nonresonant case. If the distance 
between the e.s. of resonant e.f. is too great, then it is technically more con- 
venient to pass to approximate e.f. that are e.f. up to precision q7 2+ ~'. This 
is achieved by an operation of taking a cut of e.f. The width of the gap here 
is as small as the correction to the potential under the transition s --, s + 1 
and therefore we have no possibility to estimate it in a sufficiently precise 
way. 

Thus, our construction gives directly the new functions A(S+*)(a), 
qs(~+ ~)(cr We have to investigate their properties. As was shown in Sec- 
tion 8, the boundaries of already constructed f.z. shift only a relatively 
small distance. From Section 8 the character of appearence of new f.z. also 
follows. This gives us new intervals [at, bt] (see Section 3). In order to con- 
struct other points ct, dl we have to investigate the smooth properties of 
A(,+ l)(~). This is done below. 
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(dg21 ( ~x ) ~b21 
+Egl~(~)+b12(~,#)]\ d~ +-~-~ 

We derive from it the expression for/~': 

For simplicity we consider the situation of Theorem 2. The equation 
for the new eigenvalue # has the form [-see (4.9'), (4.13)] 

E~") (c0  - ~ + b11(:~, # ) ]  [ /7(s)(~)  - # + b22(~, #)3 
+ [gl2(C0 + bl:(c~, #)J [~21(c0 + b21(c~, #)J = 0 (9.1) 

Here we use the following notations: 

c~,ll 

/l(')(c~ + me)~ + 1) = Z (s! "~- g i2i2 -1- h i2i2 0~,12 

g12(~) = gi2i~ + hi2i~, ao:~(c~) = gi~i~ + him 

b~,(~, # ) =  ~. Y~J(gJo + hJo), k, l=  1, 2 

We recall that yo also depend on/~. All terms b~ and their derivatives will 
be treated as small corrections. Differentiating (9.1), we have, with /~'= 
d~/d~, 

~bll c3b11(~, #) #,~ (d~(~')(~) # ' + ~ - - I "  j [2(s) (~+me) ,+l )  #+b22]  

(dA(~)(~+me)s+') #'+--Ug-~ +# a# / 
+ [ ,4( ' ) (~)-  # + b11] \ d~ 

+\ d~ +-~-+~-~ '_  [-~,(~)+b~(~, ~)] 

_t_ #t  ~b21~ = 0 
a# / 

dA(S)(o~) A(S)(o~ -~ mgOs + 1) - # 

g~ A<')(~ + ma ,+  ~) + A(')(~) - 2/~ 

d2(~)(~ + me), + 1) / ~ ( s ) ( R )  __ # 
q + .-. (9.2) 

dc~ /I(')(~ + me)s+ 1) + AI'I(c~) - 2# 

where the dots mean again terms of smaller order. This expression shows 
that, in the main order, g' is a linear combination of dA(')(~)/de and 
dA(')(~ + me)s+ l)/dc~ with the weights 

A(')(a + me),+ 1) - -  # p =  
A(S)(a + me),+ i) + A(S)(c~) - 2# 

Z ( s ) ( a ) - #  
q -  

A(' ) (a  + m e ) , +  1) + A(S)(a) - 2#  
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Also, f rom (4.13) and Section 8 it follows that  p ~> 0, q ~> 0, p + q = 1. N o w  
for the second derivative we have the expression 

d2~,~(s) (o~)  2(s)(o~-l-me)s+l)--# 
# " =  de2 Zl(,)(e + me)s + 1) + ~( ,)(e)  _ 2# 

d2X(~)(e + me), + 1) X( ')(e)  - 

q dee /l(S)(e + me)s+ 1) + -3('1(c0 - 2# 

_/dA(S)(e)  #,,[d-3(')(e +me),+1) ) + 

1 
X t - " "  

A(~)(e + me)s+ 1) + A(~)(e) 

Again the dots mean  small corrections. Further ,  

dA(S)(e) 

de 

dA(S)(e + me), + 1 ) 

dc~ 

(dA( ' ) (e )  dA(S)(e +me)s+l) '] 
# ' = q \  ~ & /+ 

(d~ (sl(e + me),+ l) d//")(e)~ 
#' = P  de de ] + " 

Put t ing these expressions into the previous formula,  we get 

d2/1(s)(~) A(S)(e + me)s+ 1) -- p 

P " -  de 2 ~(,)(e + me), + 1) +/](.~9(c() _ 2# 

d23()(e) 2 ( ' ) (e )  -- # 
q 

de 2 X(S)(e + me), + 1) + ~( , l (e)  _ 2g 

/d~"(e + me),+1) d~(~'(e)V 2pq & ~ /�9 

1 
x + --- (9.3) 

A(S)( e + me)s+ 1 ) + -3(s)(e) - 21~ 

The most  impor tan t  term in this expression is 

(d-'~~ c( + m e ) s +  I) d 'd")(a) '~ 2 l 

- -2pq \  -~ de J ~o(o:+me)s+l)+3(,)(o:)_2# 
(9.4) 

The difference 

[ dA(')(e + me),+ ,) dA(')(e) 
I dc~ de >~ const �9 s -  5 
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as follows from the inductive hypothesis I in Section 3. Consider the branch 
of/~ that is bigger than �89 i.e., the sign in the 
square root giving the expression for # (see Section 4) is positive. Then the 
minimal value of # defines a boundary a~. We define c t in such a way that 
rain(p, q)/> q j+31 and cz is the largest number for which this property holds. 
If ~', e" are such that A ~'+ 1)(e') = A ~'+ l~(e") = c l, then 

IdA ,+ l)(e') dA(S)(c() 
de de ~ qs3/2-c(ln ~} 1 

dA(,+ l)(f,) dA(~)(c(,) 3 / 2 - r a n  ~A) - 1  

de de ~< q~7 

In a similar way one defines dt 1- On the interval (e', e") the second 
derivative 

d2A ~" + l ) / d e 2 / >  n 1/2 - c(ln e) 1 
~ / s +  1 

This is an immediate consequence of (9.4). Thus we have defined com- 
pletely the graph A (s + l)(e), the function ~ ' +  11(e), and the points at < ct < 
d /<  bt. All other needed properties follow easily from the construction. 

The construction also gives for almost all e the limiting function 
A ( e ) = l i m , ~ A ' l ( e ) ,  which takes values in a Cantor set of positive 
measure. The lengths of f.z. decay exponentially with the number labeling 
their appearence, or, which is the same, with the diameter of the e.s. The 
existence of the function ~(e) also follows easily from the whole process. 
We give now the complete formulation of the main theorem. 

M a i n  T h e o r e m .  Assume that V is a C-function on S 1 having one 
nondegenerate minimum and one nondegenerate maximum. Then for suf- 
ficiently small e: 

(a l )  The integrated density of states is a noncomplete Cantor devil's 
staircase. 

(a2) For almost all e the operator H,(e) has a pure point spectrum 
with exponentially decaying e.f. 

10. S O M E  G E N E R A L I Z A T I O N S  

The described technique is applied without any changes to Jacobi 
matrices where off-diagonal terms depend quasiperiodically on n. Such 
cases appear in the analysis of the Fr6hlich-Peierls model (1. M. Krichever, 
personal communication). If we consider the Schr6dinger difference 
operators with potentials having two or more basic frequencies, then 
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apparently the complete Anderson localization also holds for sufficiently 
small e, but the integrated density of states has no gaps and is absolutely 
continuous. We also hope that our technique will work for the localization 
problems in the kicked-rotator model in the theory of quantum chaos (see 
Ref. 36). 

A P P E N D I X  A. E S T I M A T I O N  OF THE COEFFIC IENTS hij, gij 

Let us write (ou! o9('! ~ = 6i~2+ ' Then ' if \ r c ( , l  I ~ r ~ , t 2 ,  Cili2 �9 Cil[2 ~ O 

For other i~, i 2 we have 

Ic'/,i21 ~< qs 3/2 .-~0~ ~) 

from (a3). Thus, if II(~o~:),, ~o(~]~)ll = I +  C', then 

[16~,,~+c,,,~lL=(z+c') ' = / - c ' + ( c ' y + . . .  

and we easily get 
ICili2[ ~ q s  -[3/2 c ( l n e ) - I / 2 ] m  

i f  

F31nq, 1 ( m -  1 ) L 2 1 - - ~ j  ~< dist(Z(~o~]~), Z(q~2)) 

U 3 1 n q , ]  
< m L~J  

Write down the expansion 

The coefficients 

J'l 

In the last sum only the terms for which 

dist(Z(~0~'},), Z(q~])) <~ const. In In q, 
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m a y  give a nonzero  contr ibut ion to the last sum. Their  absolute  value is 
not more  than  q s  2+6~ and the total  numbe r  of  such terms is not  more  than 
const-  s 2. These remarks  and the previous es t imat ion of c~,~: give the needed 
es t imat ion of h~j [see (4.7')] .  In the same way one gets (4.7"). 

APPENDIX B. PROOF OF L E M M A 1 ,  SECTION 6 

First we remark  that  the sequence {~o(~ +u}  is a lmost  o r thogona l  and 
satisfies (a3), Section 4. This is obvious  if the e.s. are sufficiently far f rom 
each other. In the opposi te  case the shifts of co (s+l)  and ~o ~+ ~) are e.f. or 
a lmost  e.f. of  H~~(~,)  and H~s)(c%) and 

Ic% - ~1  ~< c o n s t ,  s3qs 2 

If co (~+~) is a nonresonan t  e.f., then the es t imat ion T ~ , i l  

~,i2 ))1 <~ q s  3/2 

follows easily f rom the theorems of pe r tu rba t ion  theory (see Sections 4 and 
5). In the case of  resonant  e.f. one has to consider (o ( ' + u  and other  r ~ , i  1 

corresponding resonant  e.f. and write down the expans ion  of co (s+ u ~.i2 over  all 
{~,~']}. Again the needed es t imat ion follows f rom the per turba t ion  theory. 
We omit  the details of  these calculations. 

N o w  we have to show that  {~o~ +1)} is a basis. Assume that  this is 
wrong and that  there exists ~ = {0(n)},  0 ~< n < qs+ 1, for which 

( ~  (0 (s + (0 (  s +  

n 

for all i and • .  I~(n)t2= 1. Let 6 m =  {hm.}" Then we can write 6m = 
' d .J / / (s)  + ~]j ,,j . . . .  j - Zm, where ~m = ~ + mo~+ 1 and 5Z' is taken over  those ~b~)j for 

which the distance between m and the e.s. is not more  than cons t .  
(ln I / e ) -~  s. We have the es t imat ions 

Further ,  

HZmII ~ q,, 3/2-c(ln e) -1, a _ 3 / 2 _  2c ( l n  e ) 1 E '  tCm/[ 2 - 1  ~<US+I 
J 

q~ = ~ ~ (m)  6,~ = ~ Z '  ~ ( m )  c .~b (s) �9 + ~, 
mJ "r ~m, J - -  ~'~ 

m j 

where for Z we have the trivial es t imat ion 

I!ZII ~ q s l ~  2 -  2c(In ~)-l 
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We rewrite the express ion for q) as follows: 

= Z ~ '  ~ (m)  (s) (,.+1) g' 
m j 

(0 ('+1~ and  include the dif- where we replace T~m,~/*(s~ by the co r re spond ing  ~ , j  
ference in ):'. W e  have 

~ d ~ - I  <~q2 1/2 4c( lne) - l ,  

But the last inequali t ies  con t rad ic t  condi t ions  
~,j , - , ,  for a l l j .  | 

Ibz'll <~q-l/2 4e(lne) 1 

to o r thogona l i t y  
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